RUJA: Repositorio Institucional de Producción Científica

 

Strategies for time series forecasting with generalized regression neural networks

dc.contributor.authorMartínez-del-Río, Francisco
dc.contributor.authorCharte, Francisco
dc.contributor.authorFrías, María Pilar
dc.contributor.authorMartínez-Rodríguez, Ana María
dc.date.accessioned2025-10-02T08:40:10Z
dc.date.available2025-10-02T08:40:10Z
dc.date.issued2022-06-28
dc.description.abstractThis paper discusses how to forecast time series using generalized regression neural networks. The main goal is to take advantage of their inherent properties to generate fast, highly accurate forecasts. To this end, the key modeling decisions involved in forecasting with generalized regression neural networks are described. To deal with every modeling decision, several strategies are proposed. Each strategy is analyzed in terms of forecast accuracy and computational time. Apart from the modeling decisions, any successful time series forecasting methodology has to be able to capture the seasonal and trend patterns found in a time series. In this regard, some clever techniques to cope with these patterns are also suggested. The proposed methodology is able to forecast time series in an automatic way. Additionally, the paper introduces a publicly available R package that incorporates the best presented modeling approaches and transformations to forecast time series with generalized regression neural networks.
dc.description.sponsorshipMinisterio de ciencia, innovación y universidades de España, bajo el proyecto PID2019-107793 GB-I00. Universidad de Jaén
dc.identifier.citationF. Martínez, F. Charte, M. P. Frías, A.M. Martínez-Rodríguez; Strategies for time series forecasting with generalized regression neural networks; Neurocomputing, Vol. 491, 2022, pp: 509-521.
dc.identifier.issn0925-2312
dc.identifier.other10.1016/j.neucom.2021.12.028
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S092523122101866X
dc.identifier.urihttps://hdl.handle.net/10953/6149
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofNeurocomputing 2002; 491:509-521
dc.rightsAttribution 3.0 Spainen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectTime series forecasting
dc.subjectGeneralized regression neural networks
dc.subject.udc004
dc.subject.udc311
dc.titleStrategies for time series forecasting with generalized regression neural networks
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S092523122101866X-main.pdf
Tamaño:
1.46 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones