RUJA: Repositorio Institucional de Producción Científica

 

Automatic Detection of Olive Tree Canopies for Groves with Thick Plant Cover on the Ground

dc.contributor.authorIllana Rico, Sergio
dc.contributor.authorMartínez Gila, Diego Manuel
dc.contributor.authorCano Marchal, Pablo
dc.contributor.authorGómez Ortega, Juan
dc.date.accessioned2024-02-07T00:22:16Z
dc.date.available2024-02-07T00:22:16Z
dc.date.issued2022-08-19
dc.description.abstractMarking the tree canopies is an unavoidable step in any study working with high-resolution aerial images taken by a UAV in any fruit tree crop, such as olive trees, as the extraction of pixel features from these canopies is the first step to build the models whose predictions are compared with the ground truth obtained by measurements made with other types of sensors. Marking these canopies manually is an arduous and tedious process that is replaced by automatic methods that rarely work well for groves with a thick plant cover on the ground. This paper develops a standard method for the detection of olive tree canopies from high-resolution aerial images taken by a multispectral camera, regardless of the plant cover density between canopies. The method is based on the relative spatial information between canopies.The planting pattern used by the grower is computed and extrapolated using Delaunay triangulation in order to fuse this knowledge with that previously obtained from spectral information. It is shown that the minimisation of a certain function provides an optimal fit of the parameters that define the marking of the trees, yielding promising results of 77.5% recall and 70.9% precision.es_ES
dc.identifier.citationIllana Rico, S.; Martínez Gila, D.M.; Cano Marchal, P.; Gómez Ortega, J. Automatic Detection of Olive Tree Canopies for Groves with Thick Plant Cover on the Ground. Sensors 2022, 22, 6219.es_ES
dc.identifier.issn1424-8220es_ES
dc.identifier.otherhttps://doi.org/10.3390/s22166219es_ES
dc.identifier.urihttps://www.mdpi.com/1424-8220/22/16/6219es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2111
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofSensors 22 (16); 6219es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectDelaunay triangulationes_ES
dc.subjectMultispectral imageryes_ES
dc.subjectOlive Tree Canopyes_ES
dc.subjectUAVes_ES
dc.subjectRemote Sensinges_ES
dc.titleAutomatic Detection of Olive Tree Canopies for Groves with Thick Plant Cover on the Groundes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
sensors-22-06219.pdf
Tamaño:
32.74 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones