RUJA: Repositorio Institucional de Producción Científica

 

Artificial neural networks applied to the measurement of lateral wheel-rail contact force: A comparison with a harmonic cancellation method

dc.contributor.authorUrda, Pedro
dc.contributor.authorFernández-Aceituno, Javier
dc.contributor.authorMuñoz-Moreno, Sergio
dc.contributor.authorEscalona, José Luis
dc.date.accessioned2024-01-31T08:08:53Z
dc.date.available2024-01-31T08:08:53Z
dc.date.issued2020
dc.description.abstractThis paper presents a method for the experimental measurement of the lateral wheel-rail contact force based on Artificial Neural Networks (ANN). It is intended to demonstrate how an Artificial Intelligence (AI) method proves to be a valid alternative to other approaches based on sophisticated mathematical models when it is applied to the wheel-rail contact force measurement problem. This manuscript addresses the problem from a computational and experimental approach. The artificial intelligence algorithm has been experimentally tested in a real scenario using a 1:10 instrumented scaled railway vehicle equipped with a dynamometric wheelset running on a 5-inch-wide track. The obtained results show that the ANN approach is an easy and computationally efficient method to measure the applied lateral force on the instrumented wheel that requires the use of fewer sensors.es_ES
dc.description.sponsorshipConserjería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía. Project reference US-1257665. Project: 2020/00000096.es_ES
dc.identifier.issn0094-114Xes_ES
dc.identifier.otherhttps://doi.org/10.1016/j.mechmachtheory.2020.103968es_ES
dc.identifier.urihttps://hdl.handle.net/10953/1771
dc.language.isoenges_ES
dc.publisherELSEVIERes_ES
dc.relation.ispartofMechanism and Machine Theory [2020]; [153]; [103968]es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectArtificial neural networkes_ES
dc.subjectMultibody systemes_ES
dc.subjectContact force measurementes_ES
dc.subjectScaled railway vehiclees_ES
dc.subjectDynamometric wheelsetes_ES
dc.subjectExperimental validationes_ES
dc.titleArtificial neural networks applied to the measurement of lateral wheel-rail contact force: A comparison with a harmonic cancellation methodes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
UrdaEtAl_ANN_2020_AcceptedManuscript.pdf
Tamaño:
26.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Accepted_manuscript

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones