RUJA: Repositorio Institucional de Producción Científica

 

A spatial functional count model for heterogeneity analysis in time

Fecha

2021-01-04

Título de la revista

ISSN de la revista

Título del volumen

Editor

Springer

Resumen

A spatial curve dynamical model framework is adopted for functional prediction of counts in a spatiotemporal log-Gaussian Cox process model. Our spatial functional estimation approach handles both wavelet-based heterogeneity analysis in time, and spectral analysis in space. Specifically, model fitting is achieved by minimising the information divergence or relative entropy between the multiscale model underlying the data, and the corresponding candidates in the spatial spectral domain. A simulation study is carried out within the family of log-Gaussian Spatial Autoregressive -valued processes (SAR processes) to illustrate the asymptotic properties of the proposed spatial functional estimators. We apply our modelling strategy to spatiotemporal prediction of respiratory disease mortality.

Descripción

Palabras clave

Cox processes in Hilbert spaces, Spatial functional estimation, Spectral wavelet-based analysis

Citación

Colecciones