RUJA: Repositorio Institucional de Producción Científica

 

Automatic lexical collocate extraction for corpus-based ontology building and refinement: A FunGramKB case study of the THEFT conceptual scenario

dc.contributor.authorFernández-Martínez, Nicolás José
dc.contributor.authorFelices-Lago, Ángel
dc.date.accessioned2025-02-01T07:31:14Z
dc.date.available2025-02-01T07:31:14Z
dc.date.issued2021-12-15
dc.description.abstractTraditional corpus-based methods rely on manual inspection and extraction of lexical collocates in the study of selection preferences, which is a very costly, labor-intensive, and time-consuming task. Devising automatic methods for lexical collocate extraction becomes necessary to handle this task and the immensity of corpora available. With a view to leveraging the Sketch Engine platform and in-built corpora, we propose a working prototype of a Lexical Collocate Extractor (LeCoExt) command-line tool that mines lexical collocates from all types of verbs according to their syntactic constituents and Collocate Frequency Score (CFS). This might be the first tool that performs comprehensive corpus-based studies of the selection preferences of individual or groups of verbs exploiting the capabilities offered by Sketch Engine. This tool might facilitate the task of extracting rich lexico-semantic knowledge from diverse corpora in a few seconds and at a click away. We test its performance for ontology building and refinement departing from a previous detailed analysis of stealing verbs carried out by Fernández-Martínez & Faber (2020). We show how the proposed tool is used to extract conceptual-cognitive knowledge from the THEFT scenario and implement it into FunGramKB Core Ontology through the creation and modification of theft-related conceptual units.es_ES
dc.identifier.citationFernández-Martínez, N. J., & Felices-Lago, Á. (2021). Automatic lexical collocate extraction for corpus-based ontology building and refinement: A FunGramKB case study of the THEFT conceptual scenario. Revista Española de Lingüística Aplicada, 34(2), 435–463. https://doi.org/10.1075/resla.19030.feres_ES
dc.identifier.issn2254-6774es_ES
dc.identifier.otherhttps://doi.org/10.1075/resla.19030.feres_ES
dc.identifier.urihttps://hdl.handle.net/10953/4608
dc.language.isoenges_ES
dc.publisherJohn Benjaminses_ES
dc.relation.ispartofRevista Española de Lingüística Aplicada/Spanish Journal of Applied Linguistics [2021]; [34(2)]; [435-463]es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectlexical collocatees_ES
dc.subjectselection preferenceses_ES
dc.subjectautomatic extractiones_ES
dc.subjectcorpus-basedes_ES
dc.subjectSketch Enginees_ES
dc.subjectFunGramKBes_ES
dc.subjectstealing verbses_ES
dc.subjecttheft scenarioes_ES
dc.subjectontology buildinges_ES
dc.titleAutomatic lexical collocate extraction for corpus-based ontology building and refinement: A FunGramKB case study of the THEFT conceptual scenarioes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
02_FER.pdf
Tamaño:
889.82 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones