On the uniqueness conjecture for the maximum Stirling numbers of the second kind
dc.contributor.author | Adell, José A. | |
dc.contributor.author | Cárdenas-Morales, Daniel | |
dc.date.accessioned | 2024-09-09T07:01:25Z | |
dc.date.available | 2024-09-09T07:01:25Z | |
dc.date.issued | 2021-04-15 | |
dc.description | This version of the article was accepted for publication after peer review. It is subject to Springer Nature’s AM terms of use. It is not the Version of Record, available online at https://doi.org/10.1007/s00025-021-01393-7 | es_ES |
dc.description.abstract | The Stirling numbers of the second kind S(n,k) satisfy S(n,0) < · · · < S(n,kn) ≥ S(n,kn+1) > · · · > S(n,n). A long standing conjecture asserts that there exists no n ≥ 3 such that S(n,kn) = S(n,kn +1). In this note, we give a characterization of this conjecture in terms of multinomial probabilities, as well as sufficient conditions on n ensuring that S(n,kn)> S(n,kn+1). | es_ES |
dc.description.sponsorship | This work is partially supported by Research Project PGC2018-097621-B-I00. The second author is also supported by Junta de Andaluc´ıa Research Group FQM-0178. | es_ES |
dc.identifier.citation | Adell, J.A., Cárdenas-Morales, D. On the Uniqueness Conjecture for the Maximum Stirling Numbers of the Second Kind. Results Math 76, 93 (2021) | es_ES |
dc.identifier.issn | 1422-6383 | es_ES |
dc.identifier.other | https://doi.org/10.1007/s00025-021-01393-7 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10953/3182 | |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Results in Mathematics | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.subject | Stirling number of the second kind | es_ES |
dc.subject | uniqueness conjecture | es_ES |
dc.subject | multinomial law | es_ES |
dc.title | On the uniqueness conjecture for the maximum Stirling numbers of the second kind | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- RUJA.pdf
- Tamaño:
- 208.84 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- accepted version
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: