RUJA: Repositorio Institucional de Producción Científica

 

On the uniqueness conjecture for the maximum Stirling numbers of the second kind

dc.contributor.authorAdell, José A.
dc.contributor.authorCárdenas-Morales, Daniel
dc.date.accessioned2024-09-09T07:01:25Z
dc.date.available2024-09-09T07:01:25Z
dc.date.issued2021-04-15
dc.descriptionThis version of the article was accepted for publication after peer review. It is subject to Springer Nature’s AM terms of use. It is not the Version of Record, available online at https://doi.org/10.1007/s00025-021-01393-7es_ES
dc.description.abstractThe Stirling numbers of the second kind S(n,k) satisfy S(n,0) < · · · < S(n,kn) ≥ S(n,kn+1) > · · · > S(n,n). A long standing conjecture asserts that there exists no n ≥ 3 such that S(n,kn) = S(n,kn +1). In this note, we give a characterization of this conjecture in terms of multinomial probabilities, as well as sufficient conditions on n ensuring that S(n,kn)> S(n,kn+1).es_ES
dc.description.sponsorshipThis work is partially supported by Research Project PGC2018-097621-B-I00. The second author is also supported by Junta de Andaluc´ıa Research Group FQM-0178.es_ES
dc.identifier.citationAdell, J.A., Cárdenas-Morales, D. On the Uniqueness Conjecture for the Maximum Stirling Numbers of the Second Kind. Results Math 76, 93 (2021)es_ES
dc.identifier.issn1422-6383es_ES
dc.identifier.otherhttps://doi.org/10.1007/s00025-021-01393-7es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3182
dc.publisherSpringeres_ES
dc.relation.ispartofResults in Mathematicses_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectStirling number of the second kindes_ES
dc.subjectuniqueness conjecturees_ES
dc.subjectmultinomial lawes_ES
dc.titleOn the uniqueness conjecture for the maximum Stirling numbers of the second kindes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
RUJA.pdf
Tamaño:
208.84 KB
Formato:
Adobe Portable Document Format
Descripción:
accepted version

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones