RUJA: Repositorio Institucional de Producción Científica

 

Incremental maintenance of discovered association rules and approximate dependencies

dc.contributor.authorPérez, Alain
dc.contributor.authorBlanco, Ignacio J.
dc.contributor.authorGonzález-González, Luisa M.
dc.contributor.authorSerrano, José M.
dc.date.accessioned2024-01-29T08:40:15Z
dc.date.available2024-01-29T08:40:15Z
dc.date.issued2017-01
dc.description.abstractAssociation Rules (ARs) and Approximate Dependencies (ADs) are significant fields in data mining and the focus of many research efforts. This knowledge, extracted by traditional mining algorithms becomes inexact when new data operations are executed, a common problem in real-world applications. Incremental mining methods arise to avoid re-runs of those algorithms from scratch by re-using information that is systematically maintained. These methods are useful to extract knowledge in dynamic environments. However, the implementation of algorithms only to maintain previously discovered information creates inefficiencies. In this paper, two active algorithms are proposed for incremental maintenance of previous discovered ARs and ADs, inspired by efficient computation of changes. These algorithms operate over a generic form of measures to efficiently maintain a wide range of rule metrics simultaneously. We also propose to compute data operations at real-time, in order to create a reduced relevant instance set. The algorithms presented do not discover new knowledge; they are just created to efficiently maintain previously extracted valuable information. Experimental results in real education data and repository datasets show that our methods achieve a good performance. In fact, they can significantly improve traditional mining, incremental mining, and a naïve approach.es_ES
dc.description.sponsorshipIberoamerican Association of Postgraduate Universities (AUIP)es_ES
dc.identifier.citationPérez-Alonso, Alain et al. ‘Incremental Maintenance of Discovered Association Rules and Approximate Dependencies’. 1 Jan. 2017 : 117 – 133.es_ES
dc.identifier.issn1088-467Xes_ES
dc.identifier.other10.3233/IDA-150434es_ES
dc.identifier.urihttps://content.iospress.com/articles/intelligent-data-analysis/ida150434es_ES
dc.identifier.urihttps://hdl.handle.net/10953/1694
dc.language.isoenges_ES
dc.publisherIOS Presses_ES
dc.relation.ispartofIntelligent Data Analysis, 2017; vol. 21, no. 1, pp. 117-133es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectAssociation ruleses_ES
dc.subjectapproximate dependencieses_ES
dc.subjectknowledge maintenance and active databaseses_ES
dc.titleIncremental maintenance of discovered association rules and approximate dependencieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
01_ida-21-ida150434.pdf
Tamaño:
2.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Copia para los autores

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones