RUJA: Repositorio Institucional de Producción Científica

 

Filtering and smoothing estimation algorithms from uncertain nonlinear observations with time-correlated additive noise and random deception attacks

dc.contributor.authorCaballero-Águila, R.
dc.contributor.authorHu, J.
dc.contributor.authorLinares-Pérez, J.
dc.date.accessioned2024-05-13T08:36:04Z
dc.date.available2024-05-13T08:36:04Z
dc.date.issued2024-03-19
dc.description.abstractThis paper discusses the problem of estimating a stochastic signal from nonlinear uncertain observations with time-correlated additive noise described by a first-order Markov process. Random deception attacks are assumed to be launched by an adversary, and both this phenomenon and the uncertainty in the observations are modelled by two sets of Bernoulli random variables. Under the assumption that the evolution model generating the signal to be estimated is unknown and only the mean and covariance functions of the processes involved in the observation equation are available, recursive algorithms based on linear approximations of the real observations are proposed for the least-squares filtering and fixed-point smoothing problems. Finally, the feasibility and effectiveness of the developed estimation algorithms are verified by a numerical simulation example, where the impact of uncertain observation and deception attack probabilities on estimation accuracy is evaluated.es_ES
dc.description.sponsorshipAyuda PID2021-124486NB-I00 financiada por MICIU/AEI/ 10.13039/501100011033 y FEDER/UE.es_ES
dc.identifier.otherhttps://doi.org/10.1080/00207721.2024.2328781es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2781
dc.language.isoenges_ES
dc.publisherTaylor & Francises_ES
dc.relation.ispartofInternational Journal of Systems Science (2024)es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectNonlinear observation modelses_ES
dc.subjectLeast-squares estimationes_ES
dc.subjectmissing measurementses_ES
dc.subjecttime-correlated noisees_ES
dc.subjectrandom deception attackses_ES
dc.titleFiltering and smoothing estimation algorithms from uncertain nonlinear observations with time-correlated additive noise and random deception attackses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Caballero_et_al_IJSS_2024_PREPRINT.pdf
Tamaño:
278.77 KB
Formato:
Adobe Portable Document Format
Descripción:
This is a preprint of an article published by Taylor & Francis in INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE on March 19 2024, available at: https://doi.org/10.1080/00207721.2024.2328781.

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones