RUJA: Repositorio Institucional de Producción Científica

 

E2SAM: Evolutionary ensemble of sentiment analysis methods for domain adaptation

dc.contributor.authorLópez, Miguel
dc.contributor.authorValdivia, Ana
dc.contributor.authorMartínez Cámara, Eugenio
dc.contributor.authorLuzón, M. Victoria
dc.contributor.authorHerrera, Francisco
dc.date.accessioned2024-02-09T00:21:55Z
dc.date.available2024-02-09T00:21:55Z
dc.date.issued2019-04
dc.description.abstractCurrently, a plethora of industrial and academic sentiment analysis methods for classifying the opinion polarity of a text are available and ready to use. However, each of those methods have their strengths and weaknesses, due mainly to the approach followed in their design (supervised/unsupervised) or the domain of text used in their development. The weaknesses are usually related to the capacity of generalisation of machine learning algorithms, and the lexical coverage of linguistic resources. Those issues are two of the main causes of one of the challenges of Sentiment Analysis, namely the domain adaptation problem. We argue that the right ensemble of a set of heterogeneous Sentiment Analysis Methods will lessen the domain adaptation problem. Thus, we propose a new methodology for optimising the contribution of a set of off-the-shelf Sentiment Analysis Methods in an ensemble classifier depending on the domain of the input text. The results clearly show that our claim holds.es_ES
dc.identifier.citationLópez, M., Valdivia, A., Martínez-Cámara, E., Luzón, M. V., & Herrera, F. (2019). E2SAM: Evolutionary ensemble of sentiment analysis methods for domain adaptation. Information Sciences, 480, 273-286.es_ES
dc.identifier.issn0020-0255es_ES
dc.identifier.otherhttps://doi.org/10.1016/j.ins.2018.12.038es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2293
dc.language.isoenges_ES
dc.relation.ispartofInformation Scienceses_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.subjectSentiment Analysises_ES
dc.subjectEnsembles Classifieres_ES
dc.subjectGenetic Algorithmses_ES
dc.titleE2SAM: Evolutionary ensemble of sentiment analysis methods for domain adaptationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
accepted_version.pdf
Tamaño:
1.64 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones