RUJA: Repositorio Institucional de Producción Científica

 

Studying the Effect of Short Carbon Fiber on Fused Filament Fabrication Parts Roughness via Machine Learning

dc.contributor.authorGarcía Collado, Alberto
dc.contributor.authorRomero Carrillo, Pablo
dc.contributor.authorDorado Vicente, Rubén
dc.contributor.authorGupta, Munish Kumar
dc.date.accessioned2024-12-05T12:36:30Z
dc.date.available2024-12-05T12:36:30Z
dc.date.issued2023-12-11
dc.description.abstractAlong with the characteristic staircase effect, short carbon fibers, added to reinforce Fused Filament Fabrication parts, can significantly worsen the resulting surface finishing. Concerning this topic, the present work intends to improve the existing knowledge by analysing 2400 measurements of arithmetic mean roughness Ra corresponding to different combinations of six process parameters: the content by weight of short carbon fibers in PETG filaments f, layer height h, surface build angle th, number of walls w, printing speed s, and extruder diameter d. The collected measurements were represented by dispersion and main effect plots. These representations indicate that the most critical parameters are th, f, and h. Besides, up to a carbon fiber content of 12%, roughness is mainly affected by the staircase effect. Hence, it would be likely to obtain reinforced parts with similar roughness to unreinforced ones. Different machine learning methods were also tested to extract more information. The prediction model of Ra using the Random Forest algorithm showed a correlation coefficient equal to 0.94 and a mean absolute error equal to 2.026 μm. On the other hand, the J48 algorithm identified a combination of parameters (h = 0.1 mm, d = 0.6 mm, and s = 30 mm/s) that, independently of the build angle, provides a Ra < 25 µm when using a 20% carbon fiber PETG filament. An example part was printed and measured to check the models. As a result, the J48 algorithm correctly classified surfaces with low roughness (Ra < 25 μm), and the Random Forest algorithm predicted the Ra value with an average relative error of less than 8 %.es_ES
dc.description.sponsorshipGrant PID2019-104586RB-I00 and the Andalusian Economy, Knowledge, Enterprise, and University Council, under grant HICOOL, reference 1263034es_ES
dc.identifier.citationGarcía-Collado, A., Romero-Carrillo, P. E., Dorado-Vicente, R., & Gupta, M. K. (2023). Studying the effect of short carbon fiber on fused filament fabrication parts roughness via machine learning. 3D Printing and Additive Manufacturing, 10(6), 1336-1346.es_ES
dc.identifier.issn2329-7662es_ES
dc.identifier.otherhttps://doi.org/10.1089/3dp.2021.0304es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3480
dc.language.isoenges_ES
dc.publisherMary Ann Liebert, Inc., publisherses_ES
dc.relation.ispartof3D Printing and Additive Manufacturinges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectFFFes_ES
dc.subjectShort Carbon Fiberes_ES
dc.subjectMachine Learninges_ES
dc.subjectMean Roughnesses_ES
dc.subjectRandom Forestes_ES
dc.subjectDecision Treees_ES
dc.subject.udc681.6es_ES
dc.subject.udc621es_ES
dc.titleStudying the Effect of Short Carbon Fiber on Fused Filament Fabrication Parts Roughness via Machine Learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2023StudyingFiberFFF rdv.pdf
Tamaño:
2.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Paper accepted

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones