RUJA: Repositorio Institucional de Producción Científica

 

Predictive Model for Human Activity Recognition Based on 2 Machine Learning and Feature Selection Techniques

dc.contributor.authorPatiño, Janns Alvaro
dc.contributor.authorAriza-Colpas, Paola Patricia
dc.contributor.authorShariq Butt, Aziz
dc.contributor.authorPiñeres, Marlon Alberto
dc.contributor.authorMorales-Ortega, Roberto Cesar
dc.contributor.authorDe la Hoz-Franco, Emiro
dc.date.accessioned2024-04-17T07:02:34Z
dc.date.available2024-04-17T07:02:34Z
dc.date.issued2022-09-27
dc.description.abstractResearch into assisted living environments –within the area of Ambient Assisted Living (ALL)– fo- 18 cuses on generating innovative technology, products, and services to provide medical treatment and rehabil- 19 itation to the elderly, with the purpose of increasing the time in which these people can live independently, 20 whether or not they suffer from neurodegenerative diseases or disabilities. This key area is responsible for 21 the development of activity recognition systems (ARS) which are a valuable tool to identify the types of ac- 22 tivities carried out by the elderly, in order to provide them with effective care that allows them to carry out 23 daily activities normally. This article aims to review the literature in order to outline the evolution of the 24 different data mining techniques applied to this health area, by showing the metrics used by researchers in 25 this area of knowledge in recent experiments.
dc.identifier.citationPatiño-Saucedo, J. A., Ariza-Colpas, P. P., Butt-Aziz, S., Piñeres-Melo, M. A., López-Ruiz, J. L., Morales-Ortega, R. C., & De-la-hoz-Franco, E. (2022). Predictive Model for Human Activity Recognition Based on Machine Learning and Feature Selection Techniques. International Journal of Environmental Research and Public Health, 19(19), 12272. https://doi.org/10.3390/ijerph191912272
dc.identifier.otherhttps://doi.org/10.3390/ijerph191912272es_ES
dc.identifier.otherhttps://doi.org/10.3390/ijerph191912272
dc.identifier.urihttps://hdl.handle.net/10953/2647
dc.identifier.urihttps://www.mdpi.com/1660-4601/19/19/12272
dc.language.isospaes_ES
dc.publisherMDPIes_ES
dc.relation.ispartofInternational Journal of Environmental Research and Public Healthes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectHuman activity recognition (HAR)es_ES
dc.subjectMachine learning
dc.subjectClassification
dc.subjectFeature selection
dc.titlePredictive Model for Human Activity Recognition Based on 2 Machine Learning and Feature Selection Techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2022-Patiño-MDPI-PredictiveModel.pdf
Tamaño:
858.52 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones