RUJA: Repositorio Institucional de Producción Científica

 

Mixed Static-Dynamic Protocol-Based Tobit Recursive Filtering for Stochastic Nonlinear Systems Against Random False Data Injection Attacks

dc.contributor.authorHu, Jun
dc.contributor.authorYang, Shuo
dc.contributor.authorCaballero-Águila, Raquel
dc.contributor.authorDong, Hongli
dc.contributor.authorWu, Boying
dc.date.accessioned2024-08-26T08:06:32Z
dc.date.available2024-08-26T08:06:32Z
dc.date.issued2024-04-22
dc.description.abstractIn this paper, the Tobit recursive filtering (TRF) issue is discussed for a class of time-varying stochastic nonlinear systems (SNSs) with censored measurements and random false data injection attacks (FDIAs) under the mixed static-dynamic protocol. The censored measurements considered are depicted by the Tobit Type I model and the phenomenon of the random FDIAs involved is governed by a set of Bernoulli random variables. Additionally, in order to reduce the communication burden and improve the data utilization efficiency, the mixed static-dynamic protocol is elaborately adopted to schedule the signal transmission, which is managed by the time-triggered and event-triggered rules to further increase the flexibility of the data scheduling. The main goal of this paper is to present a new TRF approach such that, in the presence of censored measurements, mixed static-dynamic protocol and random FDIAs, a minimized upper bound of the filtering error covariance (FEC) can be obtained. Moreover, a sufficient criterion from the theoretical analysis perspective is established to guarantee the desired uniform boundedness of the filtering error in the mean-square sense (MSS). Finally, some experiments with comparisons applicable for three-wheeled Ackerman turning model are conducted to show the applicability and advantages of newly proposed TRF scheme.es_ES
dc.description.sponsorshipGrant PID2021-124486NB-I00 funded by MICIU/AEI/ 10.13039/501100011033 and ERDF/EU. National Natural Science Foundation of China under Grant 12171124 and Grant U21A2019. Natural Science Foundation of Heilongjiang Province of China under Grant ZD2022F003. National High-End Foreign Experts Recruitment Plan of China under Grant G2023012004L.es_ES
dc.identifier.other10.1109/TSIPN.2024.3388953es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3162
dc.language.isoenges_ES
dc.relation.ispartofIEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS (2024); 10: 445-459es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectCensored measurementses_ES
dc.subjectRandom false data injection attackses_ES
dc.subjectFlexRay protocoles_ES
dc.subjectTobit recursive filteringes_ES
dc.subjectAlgorithm designes_ES
dc.subjectPerformance analysises_ES
dc.titleMixed Static-Dynamic Protocol-Based Tobit Recursive Filtering for Stochastic Nonlinear Systems Against Random False Data Injection Attackses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Early access_.pdf
Tamaño:
14.16 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones