RUJA: Repositorio Institucional de Producción Científica

 

Stress Reshapes the Physiological Response of Halophile Fungi to Salinity

dc.contributor.authorBatista-García, Ramón
dc.contributor.authorPérez-Llano, Yordanis
dc.contributor.authorRodríguez-Pupo, Eya Caridad
dc.contributor.authorDruzhinina, Irina
dc.contributor.authorChenthamara, Komal
dc.contributor.authorCai, Feng
dc.contributor.authorGunde-Cimerman, Nina
dc.contributor.authorGostinčar, Cene
dc.contributor.authorKostanjšek, Rok
dc.contributor.authorFolch, Jorge Luis
dc.contributor.authorSánchez-Carbente, María
dc.date.accessioned2025-01-30T07:22:20Z
dc.date.available2025-01-30T07:22:20Z
dc.date.issued2020
dc.description.abstractBackground: Mechanisms of cellular and molecular adaptation of fungi to salinity have been commonly drawn from halotolerant strains and few studies in basidiomycete fungi. These studies have been conducted in settings where cells are subjected to stress, either hypo- or hyperosmotic, which can be a confounding factor in describing physiological mechanisms related to salinity. Methods: We have studied transcriptomic changes in Aspergillus sydowii, a halophilic species, when growing in three different salinity conditions (No NaCl, 0.5 M, and 2.0 M NaCl). Results: In this fungus, major physiological modifications occur under high salinity (2.0 M NaCl) and not when cultured under optimal conditions (0.5 M NaCl), suggesting that most of the mechanisms described for halophilic growth are a consequence of saline stress response and not an adaptation to saline conditions. Cell wall modifications occur exclusively at extreme salinity, with an increase in cell wall thickness and lamellar structure, which seem to involve a decrease in chitin content and an augmented content of alfa and beta-glucans. Additionally, three hydrophobin genes were differentially expressed under hypo- or hyperosmotic stress but not when the fungus grows optimally. Regarding compatible solutes, glycerol is the main compound accumulated in salt stress conditions, whereas trehalose is accumulated in the absence of salt. Conclusions: Physiological responses to salinity vary greatly between optimal and high salt concentrations and are not a simple graded effect as the salt concentration increases. Our results highlight the influence of stress in reshaping the response of extremophiles to environmental challenges.
dc.identifier.other10.3390/cells9030525es_ES
dc.identifier.urihttps://hdl.handle.net/10953/4542
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofCells 2020, 9, 525es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectAspergillus sydowii genomees_ES
dc.subjectFungal cell wall
dc.subjectCompatible solutes
dc.subjectHalophilic fungi
dc.subjectHydrophobins
dc.subjectFungal transcriptomics
dc.subjectOsmotic stress
dc.titleStress Reshapes the Physiological Response of Halophile Fungi to Salinityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2020-Yordanis A sydowii.pdf
Tamaño:
3.18 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: