Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses
dc.contributor.author | Caballero-Águila, Raquel | |
dc.contributor.author | Hu, Jun | |
dc.contributor.author | Linares-Pérez, Josefa | |
dc.date.accessioned | 2025-01-29T10:41:27Z | |
dc.date.available | 2025-01-29T10:41:27Z | |
dc.date.issued | 2022-11-04 | |
dc.description.abstract | Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method —typically used to deal with the measurement noise time-correlation— is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated. | es_ES |
dc.description.sponsorship | Grant PID2021-124486NB-I00 funded by MICIU/AEI/ 10.13039/501100011033 and ERDF/EU | es_ES |
dc.identifier.citation | Caballero-Águila, R., Hu, J., Linares-Pérez, J. (2022). Two compensation strategies for optimal estimation in sensor networks with random matrices, time-correlated noises, deception attacks and packet losses. Sensors, 22(21), 8505. | es_ES |
dc.identifier.issn | 1424-8220 | es_ES |
dc.identifier.other | https://doi.org/10.3390/s22218505 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10953/4515 | |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Centralized fusion estimation | es_ES |
dc.subject | Random parameter matrices | es_ES |
dc.subject | Time-correlated noise | es_ES |
dc.subject | Deception attacks | es_ES |
dc.subject | Packet dropouts | es_ES |
dc.title | Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- sensors-22-08505.pdf
- Tamaño:
- 626.48 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Article published by MDPI in the journal SENSORS on November 4 2022, available at: https://doi.org/10.3390/s22218505
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: