A GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models for the Training of 3D Convolutional Neural Networks
dc.contributor.author | Ogáyar-Anguita, Carlos-Javier | |
dc.contributor.author | Rueda-Ruiz, Antonio-Jesús | |
dc.contributor.author | Segura-Sánchez, Rafael-Jesús | |
dc.contributor.author | Díaz-Medina, Miguel | |
dc.contributor.author | García-Fernández, Ángel-Luis | |
dc.date.accessioned | 2024-10-22T07:16:45Z | |
dc.date.available | 2024-10-22T07:16:45Z | |
dc.date.issued | 2020-01-10 | |
dc.description.abstract | In this paper we present an efficient GPU-based framework to dynamically perform the voxelization of polygonal models for training 3D convolutional neural networks. It is designed to manage the dataset augmentation by using efficient geometric transformations and random vertex displacements in GPU. With the proposed system, every voxelization is carried out on-the-fly for directly feeding the network. The computing performance with this approach is much better than with the standard method, that carries out every voxelization of each model separately and has much higher data processing overhead. The core voxelization algorithm works by using the standard rendering pipeline of the GPU. It generates binary voxels for both the interior and the surface of the models. Moreover, it is simple, concise and very compatible with commodity hardware, as it neither uses complex data structures nor needs vendor-specific hardware or additional dependencies. This framework dramatically reduces the input/output operations, and completely eliminates the storage footprint of the voxelization dataset, managing it as an implicit dataset. | es_ES |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades. Proyecto RTI2018-099638-B-I00 | es_ES |
dc.identifier.citation | C. J. Ogayar-Anguita, A. J. Rueda-Ruiz, R. J. Segura-Sánchez, M. Díaz-Medina and Á. L. García-Fernández, "A GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models for the Training of 3D Convolutional Neural Networks," in IEEE Access, vol. 8, pp. 12675-12687, 2020, doi: 10.1109/ACCESS.2020.2965624. | es_ES |
dc.identifier.issn | 2169-3536 | es_ES |
dc.identifier.other | 10.1109/ACCESS.2020.2965624 | es_ES |
dc.identifier.uri | https://doi.org/10.1109/ACCESS.2020.2965624 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10953/3304 | |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Atribución-NoComercial-CompartirIgual 3.0 España | * |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | * |
dc.subject | Voxelization | es_ES |
dc.subject | B-Rep | es_ES |
dc.subject | Boundary representation | es_ES |
dc.subject | Polygonal meshes | es_ES |
dc.subject | Convolutional neural network | es_ES |
dc.subject | 3D-CNN | es_ES |
dc.subject | Geometric deep learning | es_ES |
dc.subject.udc | 004.92 - Computer graphics | es_ES |
dc.subject.udc | 004.8 - Artificial intelligence | es_ES |
dc.title | A GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models for the Training of 3D Convolutional Neural Networks | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- paper.pdf
- Tamaño:
- 28.9 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Accepted version
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: