RUJA: Repositorio Institucional de Producción Científica

 

A GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models for the Training of 3D Convolutional Neural Networks

dc.contributor.authorOgáyar-Anguita, Carlos-Javier
dc.contributor.authorRueda-Ruiz, Antonio-Jesús
dc.contributor.authorSegura-Sánchez, Rafael-Jesús
dc.contributor.authorDíaz-Medina, Miguel
dc.contributor.authorGarcía-Fernández, Ángel-Luis
dc.date.accessioned2024-10-22T07:16:45Z
dc.date.available2024-10-22T07:16:45Z
dc.date.issued2020-01-10
dc.description.abstractIn this paper we present an efficient GPU-based framework to dynamically perform the voxelization of polygonal models for training 3D convolutional neural networks. It is designed to manage the dataset augmentation by using efficient geometric transformations and random vertex displacements in GPU. With the proposed system, every voxelization is carried out on-the-fly for directly feeding the network. The computing performance with this approach is much better than with the standard method, that carries out every voxelization of each model separately and has much higher data processing overhead. The core voxelization algorithm works by using the standard rendering pipeline of the GPU. It generates binary voxels for both the interior and the surface of the models. Moreover, it is simple, concise and very compatible with commodity hardware, as it neither uses complex data structures nor needs vendor-specific hardware or additional dependencies. This framework dramatically reduces the input/output operations, and completely eliminates the storage footprint of the voxelization dataset, managing it as an implicit dataset.es_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades. Proyecto RTI2018-099638-B-I00es_ES
dc.identifier.citationC. J. Ogayar-Anguita, A. J. Rueda-Ruiz, R. J. Segura-Sánchez, M. Díaz-Medina and Á. L. García-Fernández, "A GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models for the Training of 3D Convolutional Neural Networks," in IEEE Access, vol. 8, pp. 12675-12687, 2020, doi: 10.1109/ACCESS.2020.2965624.es_ES
dc.identifier.issn2169-3536es_ES
dc.identifier.other10.1109/ACCESS.2020.2965624es_ES
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2020.2965624es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3304
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.ispartofIEEE Accesses_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.subjectVoxelizationes_ES
dc.subjectB-Repes_ES
dc.subjectBoundary representationes_ES
dc.subjectPolygonal mesheses_ES
dc.subjectConvolutional neural networkes_ES
dc.subject3D-CNNes_ES
dc.subjectGeometric deep learninges_ES
dc.subject.udc004.92 - Computer graphicses_ES
dc.subject.udc004.8 - Artificial intelligencees_ES
dc.titleA GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models for the Training of 3D Convolutional Neural Networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
paper.pdf
Tamaño:
28.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Accepted version

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones