RUJA: Repositorio Institucional de Producción Científica

 

A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications.

dc.contributor.authorAlzubaidi, Laith
dc.contributor.authorBai, Jinshuai
dc.contributor.authorAl-Sabaawi, Aiman
dc.contributor.authorSantamaria, José
dc.contributor.authorAlbahri, Ahmed Shihab
dc.contributor.authorAl-dabbagh, Bashar Sami Nayyef
dc.contributor.authorFadhel, Mohammed A.
dc.contributor.authorManoufali, Mohammed
dc.contributor.authorZhang, Jinglan
dc.contributor.authorAl-Timemy, Ali H.
dc.contributor.authorDuan, Ye
dc.contributor.authorAbdullah, Amjed
dc.contributor.authorFarhan, Laith
dc.contributor.authorLu, Yi
dc.contributor.authorGupta, Ashish
dc.contributor.authorAlbu, Felix
dc.contributor.authorAbbosh, Amin
dc.contributor.authorGu, Yuantong
dc.date.accessioned2024-02-11T07:52:03Z
dc.date.available2024-02-11T07:52:03Z
dc.date.issued2023-04-14
dc.descriptionEl trabajo forma parte de la tesis doctoral del primer autor, Dr. Laith Alzubaidi, siendo José Santamaría investigador invitado por el autor del artículo en la co-supervision de dicha tesis doctoral, correspondiendo este con uno de los varios artículos científicos que fueron desarrollados y publicados durante y después de la tesis doctoral del Dr. Alzubaidi. Se adjunta documento acreditativo de lo anterior.es_ES
dc.description.abstractData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time‑consuming, and error‑prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state‑of‑the‑art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state‑of‑the‑art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self‑Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics‑Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.es_ES
dc.description.sponsorshipThe authors would like to acknowledge the support received through the following funding schemes of Australian Government: Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Joint Biomechanics under grant IC190100020. The authors also would like to acknowledge the support received through the MMPE ECR Ignition Grant, The Queensland University of Technology.es_ES
dc.identifier.citationAlzubaidi, L., Bai, J., Al-Sabaawi, A. et al. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data 10, 46 (2023). https://doi.org/10.1186/s40537-023-00727-2es_ES
dc.identifier.issn2196-1115es_ES
dc.identifier.other10.1186/s40537-023-00727-2es_ES
dc.identifier.urihttps://doi.org/10.1186/s40537-023-00727-2es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2337
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofJournal of Big Data 2023; 10: 46es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectConvolutional neural networkes_ES
dc.subjectDeep Learninges_ES
dc.subjectMedical image analysises_ES
dc.subjectTransfer learninges_ES
dc.titleA survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
s40537-023-00727-2.pdf
Tamaño:
4.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Fichero PDF

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones