Biased Regression Algorithms in the Quaternion Domain
dc.contributor.author | Ruiz Molina, Juan Carlos | |
dc.contributor.author | Navarro Moreno, Jesús | |
dc.contributor.author | Fernández Alcalá, Rosa Mª | |
dc.contributor.author | Jiménez López, José D. | |
dc.date.accessioned | 2025-01-19T22:28:11Z | |
dc.date.available | 2025-01-19T22:28:11Z | |
dc.date.issued | 2024 | |
dc.description.abstract | The ill-conditioned matrix problem in quaternion linear regression models is addressed in this paper and several dimension-reduction based regression methods for circumventing this problem are suggested. The algorithms are formulated in a general way and can be easily adapted to different scenarios: widely linear, semi-widely linear and strictly linear processing, in accordance with the properness properties presented by quaternion random vectors. A comparison with existing solutions is carried out by using both laboratory data and a color face database. | es_ES |
dc.identifier.other | 10.1016/J.JFRANKLIN.2024.106785 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10953/4151 | |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Franklin Institute 2024 | es_ES |
dc.rights | CC0 1.0 Universal | * |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.subject | Ill-conditioned Matrices | es_ES |
dc.subject | Partial Least Squares | es_ES |
dc.subject | Quaternion Regression Models | es_ES |
dc.subject | Properness Properties | es_ES |
dc.title | Biased Regression Algorithms in the Quaternion Domain | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.type.version | info:eu-repo/semantics/draft | es_ES |