RUJA: Repositorio Institucional de Producción Científica

 

Biased Regression Algorithms in the Quaternion Domain

dc.contributor.authorRuiz Molina, Juan Carlos
dc.contributor.authorNavarro Moreno, Jesús
dc.contributor.authorFernández Alcalá, Rosa Mª
dc.contributor.authorJiménez López, José D.
dc.date.accessioned2025-01-19T22:28:11Z
dc.date.available2025-01-19T22:28:11Z
dc.date.issued2024
dc.description.abstractThe ill-conditioned matrix problem in quaternion linear regression models is addressed in this paper and several dimension-reduction based regression methods for circumventing this problem are suggested. The algorithms are formulated in a general way and can be easily adapted to different scenarios: widely linear, semi-widely linear and strictly linear processing, in accordance with the properness properties presented by quaternion random vectors. A comparison with existing solutions is carried out by using both laboratory data and a color face database.es_ES
dc.identifier.other10.1016/J.JFRANKLIN.2024.106785es_ES
dc.identifier.urihttps://hdl.handle.net/10953/4151
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofJournal of Franklin Institute 2024es_ES
dc.rightsCC0 1.0 Universal*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectIll-conditioned Matriceses_ES
dc.subjectPartial Least Squareses_ES
dc.subjectQuaternion Regression Modelses_ES
dc.subjectProperness Propertieses_ES
dc.titleBiased Regression Algorithms in the Quaternion Domaines_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/draftes_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
paper.pdf
Tamaño:
493.68 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones