RUJA: Repositorio Institucional de Producción Científica

 

MarIA and BETO are sexist: evaluating gender bias in large language models for Spanish

dc.contributor.authorGarrido-Muñoz, Ismael
dc.contributor.authorMartínez-Santiago, Fernando
dc.contributor.authorMontejo-Ráez, Arturo
dc.date.accessioned2024-02-02T13:32:08Z
dc.date.available2024-02-02T13:32:08Z
dc.date.issued2023-07-23
dc.description.abstractThe study of bias in language models is a growing area of work, however, both research and resources are focused on English. In this paper, we make a first approach focusing on gender bias in some freely available Spanish language models trained using popular deep neural networks, like BERT or RoBERTa. Some of these models are known for achieving state-of-the-art results on downstream tasks. These promising results have promoted such models’ integration in many real-world applications and production environments, which could be detrimental to people affected for those systems. This work proposes an evaluation framework to identify gender bias in masked language models, with explainability in mind to ease the interpretation of the evaluation results. We have evaluated 20 different models for Spanish, including some of the most popular pretrained ones in the research community. Our findings state that varying levels of gender bias are present across these models.This approach compares the adjectives proposed by the model for a set of templates. We classify the given adjectives into understandable categories and compute two new metrics from model predictions, one based on the internal state (probability) and the other one on the external state (rank). Those metrics are used to reveal biased models according to the given categories and quantify the degree of bias of the models under study.es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad de Jaén/CBUA. This work has been partially supported by WeLee project (1380939, FEDER Andalucía 2014-2020) funded by the Andalusian Regional Government, and projects CONSENSO (PID2021-122263OB-C21), MODERATES (TED2021-130145B-I00), SocialTOX (PDC2022-133146-C21) funded by Plan Nacional I+D+i from the Spanish Government, and project PRECOM (SUBV-00016) funded by the Ministry of Consumer Affairs of the Spanish Government.es_ES
dc.identifier.citationGarrido-Muñoz, I., Martínez-Santiago, F. & Montejo-Ráez, A. MarIA and BETO are sexist: evaluating gender bias in large language models for Spanish. Lang Resources & Evaluation (2023). https://doi.org/10.1007/s10579-023-09670-3es_ES
dc.identifier.issn1574-0218es_ES
dc.identifier.other10.1007/s10579-023-09670-3es_ES
dc.identifier.urihttps://link.springer.com/article/10.1007/s10579-023-09670-3es_ES
dc.identifier.urihttps://hdl.handle.net/10953/1911
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofLanguage Resources and Evaluationes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBERTes_ES
dc.subjectBias evaluationes_ES
dc.subjectDeep learninges_ES
dc.subjectGender biases_ES
dc.subjectLanguage modeles_ES
dc.subjectRoBERTaes_ES
dc.titleMarIA and BETO are sexist: evaluating gender bias in large language models for Spanishes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2023_MarIAandBETO.pdf
Tamaño:
1.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Published version

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones