RUJA: Repositorio Institucional de Producción Científica

 

Deepening into the suitability of using pre-trained models of ImageNet against a lightweight convolutional neural network in medical imaging: an experimental study

dc.contributor.authorAlzubaidi, L.
dc.contributor.authorDuan, Y.
dc.contributor.authorAl-Dujaili, A.
dc.contributor.authorIbraheem, I.K.
dc.contributor.authorAlkenani, A.H.
dc.contributor.authorSantamaria, J.
dc.contributor.authorFadhel, M.A.
dc.contributor.authorAl-Shamma, O.
dc.contributor.authorZhang, J.
dc.date.accessioned2024-02-11T07:49:38Z
dc.date.available2024-02-11T07:49:38Z
dc.date.issued2021-09-28
dc.descriptionEl trabajo forma parte de la tesis doctoral del primer autor, Dr. Laith Alzubaidi, siendo José Santamaría investigador invitado por el autor del artículo en la co-supervisión de dicha tesis doctoral, correspondiendo este con uno de los varios artículos científicos que fueron desarrollados y publicados durante y después de la tesis doctoral del Dr. Alzubaidi.es_ES
dc.description.abstractTransfer learning (TL) has been widely utilized to address the lack of training data for deep learning models. Specifically, one of the most popular uses of TL has been for the pre-trained models of the ImageNet dataset. Nevertheless, although these pre- trained models have shown an effective performance in several domains of application, those models may not offer significant benefits in all instances when dealing with medical imaging scenarios. Such models were designed to classify a thousand classes of natural images. There are fundamental differences between these models and those dealing with medical imaging tasks regarding learned features. Most medical imaging applications range from two to ten different classes, where we suspect that it would not be necessary to employ deeper learning models. This paper investigates such a hypothesis and develops an experimental study to examine the corresponding conclusions about this issue. The lightweight convolutional neural network (CNN) model and the pre-trained models have been evaluated using three different medical imaging datasets. We have trained the lightweight CNN model and the pre-trained models with two scenarios which are with a small number of images once and a large number of images once again. Surprisingly, it has been found that the lightweight model trained from scratch achieved a more competitive performance when compared to the pre-trained model. More importantly, the lightweight CNN model can be successfully trained and tested using basic computational tools and provide high-quality results, specifically when using medical imaging datasets.es_ES
dc.identifier.citationAlzubaidi L, Duan Y, Al-Dujaili A, Ibraheem IK, Alkenani AH, Santamaría J, Fadhel MA, Al-Shamma O, Zhang J. 2021. Deepening into the suitability of using pre-trained models of ImageNet against a lightweight convolutional neural network in medical imaging: an experimental study. PeerJ Computer Science 7:e715 https://doi.org/10.7717/peerj-cs.715es_ES
dc.identifier.issn2376-5992es_ES
dc.identifier.other10.7717/peerj-cs.715es_ES
dc.identifier.urihttps://doi.org/10.7717/peerj-cs.715es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2323
dc.language.isoenges_ES
dc.publisherPeerJes_ES
dc.relation.ispartofPeerJ Comput. Sci. 2021; 7:e715es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectTransfer learninges_ES
dc.subjectDeep learninges_ES
dc.subjectConvolutional neural networkes_ES
dc.subjectMedical imaginges_ES
dc.titleDeepening into the suitability of using pre-trained models of ImageNet against a lightweight convolutional neural network in medical imaging: an experimental studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
peerj-cs-715.pdf
Tamaño:
32.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Fichero PDF

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones