RUJA: Repositorio Institucional de Producción Científica

 

Multi-objective optimization of virtual machine migration among cloud data centers

dc.contributor.authorMaldonado Carrascosa, Francisco Javier
dc.contributor.authorSeddiki, Doraid
dc.contributor.authorJiménez Sánchez, Antonio
dc.contributor.authorGarcía Galán, Sebatián
dc.contributor.authorValverde Ibáñez, Manuel
dc.date.accessioned2025-01-17T09:31:12Z
dc.date.available2025-01-17T09:31:12Z
dc.date.issued2024-07-24
dc.description.abstractWorkload migration among cloud data centers is currently an evolving task that requires substantial advancements. The incorporation of fuzzy systems holds potential for enhancing performance and efficiency within cloud computing. This study addresses a multi-objective problem wherein the goal is to maximize the interpretability and the percentage of renewable energy consumed by a fuzzy meta-scheduler system in cloud scenarios. To accomplish this objective, the present research proposes a novel approach utilizing a multi-objective Knowledge Acquisition with a Swarm Intelligence Approach algorithm. Additionally, it takes advantage of a framework built on CloudSim, which includes virtual machine migration capabilities based on an expert system. Furthermore, a hierarchical fuzzy system is employed to assess rule base interpretability, along with another multi-objective algorithm, named Non-dominated Sorting Genetic Algorithm II. The framework and hierarchical system are employed to perform various simulation results concerning renewable energy and interpretability, while the algorithms aim to enhance the system’s performance and interpretability. Empirical results demonstrate that it is possible to improve the performance of cloud data centers while improving the interpretability of the corresponding fuzzy rule-based system. The proposed multi-objective algorithm shows comparable or superior performance to the genetic algorithm across diverse scenarios. The simulation results indicate that improvements in cloud data center performance can be achieved while enhancing system interpretability. The average improvement in the interpretability index ranges from 0.6 to 6%, with a corresponding increase in renewable energy utilization ranging from 5 to 6%.es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad de Jaén/CBUA. This work has been supported by the research project P18- RT-4046 and the NextGenerationEU recovery plan. Author S. Galan has received support from Andalusia Government and author F. Maldonado has received support from the European Union.es_ES
dc.identifier.citationMaldonado Carrascosa, F.J., Seddiki, D., Jiménez Sánchez, A. et al. Multi-objective optimization of virtual machine migration among cloud data centers. Soft Comput 28, 12043–12060 (2024). https://doi.org/10.1007/s00500-024-09950-2ASoes_ES
dc.identifier.issn1432-7643es_ES
dc.identifier.otherhttps://doi.org/10.1007/s00500-024-09950-2es_ES
dc.identifier.urihttps://link.springer.com/article/10.1007/s00500-024-09950-2es_ES
dc.identifier.urihttps://hdl.handle.net/10953/4051
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofSoft Computing [2024](28)12043–12060,es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectExplainable artificial intelligencees_ES
dc.subjectCloud computinges_ES
dc.subjectVirtual machine migrationes_ES
dc.subjectEnergy sustainabilityes_ES
dc.subjectMulti-objective optimizationes_ES
dc.titleMulti-objective optimization of virtual machine migration among cloud data centerses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
MO-KASIA-Revised.pdf
Tamaño:
648.65 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones