RUJA: Repositorio Institucional de Producción Científica

 

Bone Quality Classification of Dual Energy X-ray Absorptiometry Images using Convolutional Neural Network Models

dc.contributor.authorGonzález, Mailen
dc.contributor.authorFuertes, José M.
dc.contributor.authorLucena López, Manuel
dc.contributor.authorAbdala, Rubén
dc.contributor.authorMassa, José M.
dc.date.accessioned2025-01-14T11:50:30Z
dc.date.available2025-01-14T11:50:30Z
dc.date.issued2024-06
dc.description.abstractThe assessment of bone trabecular quality degradation is important for the detection of diseases such as osteoporosis. The gold standard for its diagnosis is the Dual Energy X-ray Absorptiometry (DXA) image modality. The analysis of these images is a topic of growing interest, especially with artificial intelligence techniques. This work proposes the detection of a degraded bone structure from DXA images using some approaches based on the learning of Trabecular Bone Score (TBS) ranges. The proposed models are supported by intelligent systems based on convolutional neural networks using two kinds of approaches: ad hoc architectures and knowledge transfer systems in deep network architectures, such as AlexNet, ResNet, VGG, SqueezeNet, and DenseNet retrained with DXA images. For both approaches, experimental studies were made comparing the proposed models in terms of effectiveness and training time, achieving an F1-Score result of approximately 0.75 to classify the bone structure as degraded or normal according to its TBS range.es_ES
dc.description.sponsorshipFellowship of Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET) and Escuela Doctoral de la Universidad de Jaén (EDUJA).es_ES
dc.identifier.citationMailen Gonzalez, Jose M. Fuertes Garcia, Manuel J. Lucena Lopez, Ruben Abdala and Jose M. Massa, “Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models” International Journal of Advanced Computer Science and Applications(ijacsa), 15(6), 2024.es_ES
dc.identifier.issn2158-107Xes_ES
dc.identifier.otherhttps://dx.doi.org/10.14569/IJACSA.2024.01506154es_ES
dc.identifier.urihttps://thesai.org/Publications/ViewPaper?Volume=15&Issue=6&Code=ijacsa&SerialNo=154es_ES
dc.identifier.urihttps://hdl.handle.net/10953/3938
dc.language.isoenges_ES
dc.publisherScience and Information Organizationes_ES
dc.relation.ispartofInternational Journal of Advanced Computer Science and Applicationses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectOsteoporosises_ES
dc.subjectDual Energy X-ray Absorptiometry (DXA)es_ES
dc.subjectTrabecular Bone Score (TBS)es_ES
dc.subjectClassificationes_ES
dc.subjectConvolutional Neural Network (CNN)es_ES
dc.subject.udc681.3es_ES
dc.titleBone Quality Classification of Dual Energy X-ray Absorptiometry Images using Convolutional Neural Network Modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ijacsa2024.pdf
Tamaño:
1.09 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones