RUJA: Repositorio Institucional de Producción Científica

 

Expert system based on computer vision to estimate the content of impurities in olive oil samples

dc.contributor.authorCano Marchal, Pablo
dc.contributor.authorMartínez Gila, Diego Manuel
dc.contributor.authorGámez García, Javier
dc.contributor.authorGómez Ortega, Juan
dc.date.accessioned2024-02-05T10:56:27Z
dc.date.available2024-02-05T10:56:27Z
dc.date.issued2013-06-01
dc.description.abstractThe determination of the content of impurities is a very frequent analysis performed on virgin olive oil samples, but the official method is quite work-intensive, and it would be convenient to have an alternative approximate method to evaluate the performance of the impurity removal process. In this work we develop a system based on computer vision and pattern recognition to classify the content of impurities of the olive oil samples in three sets, indicative of the goodness of the separation process of olive oil after its extraction from the paste. Starting from the histograms of the channels of the Red–Green–Blue (RGB), CIELAB and Hue-Saturation-Value (HSV) color spaces, we construct an initial input parameter vector and perform a feature extraction previous to the classification. Several linear and non-linear feature extraction techniques were evaluated, and the classifiers used were Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs). The best classification rate achieved was 87.66%, obtained using Kernel Principal Components Analysis (KPCA) and a grade-3-polynomial kernel SVM. The best result using ANNs was 82.38%, yielded by the use of Principal Component Analysis (PCA) with the Perceptron.es_ES
dc.description.sponsorshipDPI2011-27284, TEP2009-5363 y AGR-6429.es_ES
dc.identifier.citationMarchal, P. C., Gila, D. M. M., Garcia, J. G., & Ortega, J. G. (2013). Expert system based on computer vision to estimate the content of impurities in olive oil samples. Journal of Food Engineering, 119(2), 220–228. https://doi.org/10.1016/j.jfoodeng.2013.05.032es_ES
dc.identifier.issn1873-5770es_ES
dc.identifier.otherhttp://dx.doi.org/10.1016/j.jfoodeng.2013.05.032es_ES
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0260877413002677es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2090
dc.language.isoenges_ES
dc.publisherELSEVIERes_ES
dc.relation.ispartofJournal of Food Engineeringes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectOlive oiles_ES
dc.subjectOlive oil analysises_ES
dc.subjectComputer visiones_ES
dc.subjectSupport vector machineses_ES
dc.subjectArtificial neural networkses_ES
dc.titleExpert system based on computer vision to estimate the content of impurities in olive oil sampleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Expert system based on computer vision_ACCEPTED_VERSION.pdf
Tamaño:
1.78 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones