Este ítem es privado
User Vs. Self-tuning Optimization: A Case Study on Image Registration
Fecha
2022-02-03
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Taylor & Francis Group. Apple Academic Press
Resumen
In the last few years, there has been an increased interest in providing new soft computing (SC) algorithms, e.g., evolutionary algorithms (EAs), in which it is not needed the tuning of the control parameters. Usually, this new approach is named self-tuned and several models have been proposed to date. In our study, we aim to, firstly, describe how self-tuning EAs work and, secondly, provide a computational comparison of algorithms dealing with a specific computer vision (CV) task, named image registration (IR), as baseline. In particular, the development of automated IR methods is a well-known issue within the CS field and it was largely addressed from multiple viewpoints. IR has been applied to a high number of real-world scenarios ranging from remote sensing to medical imaging, artificial vision, and computer-aided design. Then, in this contribution it is provided a comprehensive analysis of the self-tuning approach by means of the experimental comparison of several EA-based IR algorithms proposed in the state-of-the-art.
Descripción
El trabajo corresponde a una publicación con invitación realizada por los editores del libro, en cuya elaboración participaron miembros del equipo de investigación PAIDI de la Universidad de Jaén "Ingeniería Computacional Aplicada", cuyo responsable es el primer autor de la publicación. La investigación corresponde a una línea de investigación desarrollada por el autor desde 2003.
Palabras clave
Computer vision, Image registration, Softcomputing
Citación
Santamaría J., Rivero-Cejudo M.L.;. User Vs. Self-tuning Optimization: A Case Study on Image Registration. Applied Soft Computing: Techniques and Applications. Eds. Samarjeet Borah and Ranjit Panigrahi. Apple Academic Press – CRC Press. ISBN-978-1-77463-029-7, 2022. https://doi.org/10.1201/9781003186885