RUJA: Repositorio Institucional de Producción Científica

 

Spatial Cox Processes in an Infinite-Dimensional Framework

dc.contributor.authorFrías, María Pilar
dc.contributor.authorTorres-Signes, Antoni
dc.contributor.authorRuiz-Medina, María Dolores
dc.date.accessioned2025-10-09T09:49:07Z
dc.date.available2025-10-09T09:49:07Z
dc.date.issued2021-04-29
dc.description.abstractWe introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.
dc.identifier.issn1133-0686
dc.identifier.otherhttps://doi.org/10.1007/s11749-021-00773-z
dc.identifier.urihttps://hdl.handle.net/10953/6193
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofTEST
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectIn fite-dimensional log-intensity
dc.subjectPeriodogram operator
dc.subjectRespiratory disease mortality
dc.subjectSpatial Autoregressive Hilbertian processes
dc.subjectSpatial Cox processes
dc.subject.udc60G25
dc.subject.udc60G60
dc.subject.udc62J05
dc.subject.udc62J10
dc.titleSpatial Cox Processes in an Infinite-Dimensional Framework
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TEST-2022_Pp.pdf
Tamaño:
2.96 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones