RUJA: Repositorio Institucional de Producción Científica

 

Distributed resilient fusion filtering for nonlinear systems with multiple missing measurements via dynamic event-triggered mechanism

dc.contributor.authorHu, Jun
dc.contributor.authorHu, Zhibin
dc.contributor.authorCaballero-Águila, Raquel
dc.contributor.authorChen, Cai
dc.contributor.authorFan, Shuting
dc.contributor.authorYi, Xiaojian
dc.date.accessioned2025-01-30T18:33:28Z
dc.date.available2025-01-30T18:33:28Z
dc.date.issued2023
dc.description.abstractThis paper investigates the distributed resilient fusion filtering (DRFF) issue under inverse covariance intersection (ICI) fusion criterion and dynamic event-triggered mechanisms (DETMs), where the physical plant is described by stochastic nonlinear multi-sensor networked systems (MSNSs) with time-varying system parameters and multiple missing measurements (MMMs). The measurements from various sensor nodes to the fusion center may undergo the missing data, where this phenomenon is depicted by means of random variables governed by certain statistical principles. In addition, the DETM is adopted to regulate the communication process from each sensor node to fusion center, which can alleviate the network transmission situations with communication overload and energy consumption limitation. The purpose of the addressed issue is to construct a set of local resilient filters (LRFs) for stochastic nonlinear MSNSs with MMMs via the DETM, which can guarantee that the minimized upper bounds are derived and the desirable filter gain with easy-to-implementation form is given. Subsequently, via the obtained LRFs, a unified framework of the DRFF approach is formulated through using the ICI fusion criterion. In addition, the monotonicity analysis of the obtained upper bound in regard to the triggered parameter is examined by providing rigorous theoretical proof. Finally, the simulations with comparison experiment are provided to illustrate the validity of presented DRFF technique.es_ES
dc.identifier.citationJun Hu, Zhibin Hu, Raquel Caballero-Águila, Cai Chen, Shuting Fan, Xiaojian Yi, Distributed resilient fusion filtering for nonlinear systems with multiple missing measurements via dynamic event-triggered mechanism, Information Sciences, Volume 637, 2023, 118950, https://doi.org/10.1016/j.ins.2023.118950.es_ES
dc.identifier.issn0020-0255es_ES
dc.identifier.otherhttps://doi.org/10.1016/j.ins.2023.118950es_ES
dc.identifier.urihttps://hdl.handle.net/10953/4593
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofInformation Scienceses_ES
dc.rightsAn error occurred on the license name.*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.uriAn error occurred getting the license - uri.*
dc.subjectNonlinear time-varying multi-sensor networked systemses_ES
dc.subjectMultiple missing measurementses_ES
dc.subjectDynamic event-triggered communicationes_ES
dc.subjectDistributed resilient fusion filteringes_ES
dc.subjectInverse covariance intersectiones_ES
dc.titleDistributed resilient fusion filtering for nonlinear systems with multiple missing measurements via dynamic event-triggered mechanismes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Accepted_version.pdf
Tamaño:
823.25 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones