RUJA: Repositorio Institucional de Producción Científica

 

Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

dc.contributor.authorAlzubaidi, Laith
dc.contributor.authorZhang, Jinglan
dc.contributor.authorHumaidi, Amjad J.
dc.contributor.authorAl-Dujaili, Ayad
dc.contributor.authorDuan, Ye
dc.contributor.authorAl-Shamma, Omrad
dc.contributor.authorSantamaria, José
dc.contributor.authorFadhel, Mohammed A.
dc.contributor.authorAl-Amidie, Muthana
dc.contributor.authorFarhan, Laith
dc.date.accessioned2024-02-11T07:47:00Z
dc.date.available2024-02-11T07:47:00Z
dc.date.issued2021-03-31
dc.descriptionEl trabajo forma parte de la tesis doctoral del primer autor, Dr. Laith Alzubaidi, siendo José Santamaría investigador invitado por el autor del artículo en la co-supervision de dicha tesis doctoral, siendo este uno de los varios artículos científicos que fueron desarrollados y publicados durante y después de la tesis doctoral del Dr. Laith Alzubaidi.es_ES
dc.description.abstractIn the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well‑known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State‑of‑the‑Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High‑Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.es_ES
dc.identifier.citationAlzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8, 53 (2021). https://doi.org/10.1186/s40537-021-00444-8es_ES
dc.identifier.issn2196-1115es_ES
dc.identifier.other10.1186/s40537-021-00444-8es_ES
dc.identifier.urihttps://doi.org/10.1186/s40537-021-00444-8es_ES
dc.identifier.urihttps://hdl.handle.net/10953/2309
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofJournal of Big Data 2021; 8: 53es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectDeep Learninges_ES
dc.subjectMachine Learninges_ES
dc.subjectConvolutional neural networkes_ES
dc.subjectImage Classificationes_ES
dc.subjectMedical Image Analysises_ES
dc.subjectFPGAes_ES
dc.titleReview of deep learning: concepts, CNN architectures, challenges, applications, future directionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
s40537-021-00444-8.pdf
Tamaño:
7.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Fichero PDF de la publicación OA

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones