RUJA: Repositorio Institucional de Producción Científica

 

Asymptotic and Non-asymptotic Results in the Approximation by Bernstein Polynomials

dc.contributor.authorAdell, José A.
dc.contributor.authorCárdenas-Morales, Daniel
dc.date.accessioned2024-01-31T23:23:48Z
dc.date.available2024-01-31T23:23:48Z
dc.date.issued2022-06-29
dc.description.abstractThis paper deals with the approximation of functions by the classical Bernstein polynomials in terms of the Ditzian–Totik modulus of smoothness. Asymptotic and non-asymptotic results are respectively stated for continuous and twice continuously differentiable functions. By using a probabilistic approach, known results are either completed or strengthened.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is partially supported by the Spanish government Research Project PGC2018-097621-B-I00. The second author is also supported by Junta de Andalucía Research Group FQM-0178.es_ES
dc.identifier.citationAdell, J.A., Cárdenas-Morales, D. Asymptotic and Non-asymptotic Results in the Approximation by Bernstein Polynomials. Results Math 77, 166 (2022).es_ES
dc.identifier.issn1420-9012 (Electronic) 1422-6383 (Print)es_ES
dc.identifier.other10.1007/s00025-022-01680-xes_ES
dc.identifier.urihttps://hdl.handle.net/10953/1883
dc.language.isoenges_ES
dc.publisherBirkhäuser - Springeres_ES
dc.relation.ispartofResults in Mathematicses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBernstein polynomialses_ES
dc.subjectDitzian–Totik modulus of smoothnesses_ES
dc.subjectSteklov meanses_ES
dc.subjectBinomial random variablees_ES
dc.titleAsymptotic and Non-asymptotic Results in the Approximation by Bernstein Polynomialses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
RESULTS 2022.pdf
Tamaño:
333.61 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones