RUJA: Repositorio Institucional de Producción Científica

 

Coherent States for infinite homogeneous waveguide arrays

Fecha

2021

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

Perelomov coherent states for equally spaced, infinite homogeneous waveguide arrays with Euclidean E(2) symmetry are defined, and new resolutions of the identity are constructed in Cartesian and polar coordinates. The key point to construct these resolutions of the identity is the fact that coherent states satisfy Helmholtz equation (in coherent states labels) an thus a non-local scalar product with a convolution kernel can be introduced which is invariant under the Euclidean group. It is also shown that these coherent states for the Eucliean E(2) group have a simple and natural physical realization in these waveguide arrays.

Descripción

Palabras clave

Coherent states,, Euclidean group, waveguide arrays, Helmholtz equation

Citación

Colecciones