RUJA: Repositorio Institucional de Producción Científica

 

A cellular-based evolutionary approach for the extraction of emerging patterns in massive data streams

dc.contributor.authorGarcía-Vico, Ángel M.
dc.contributor.authorCarmona, Cristóbal J.
dc.contributor.authorGonzález, Pedro
dc.contributor.authordel Jesus, María José
dc.date.accessioned2025-01-22T11:19:51Z
dc.date.available2025-01-22T11:19:51Z
dc.date.issued2021
dc.description.abstractToday, the number of existing devices generates immense amounts of data on a continuous basis that must be processed by new distributed data stream mining approaches. In this paper we present a new approach for extracting descriptive emerging patterns in massive data streams from different sources through Apache Kafka and Apache Spark Streaming whose objective is to monitor the state of the system with respect to a variable of interest. For this purpose, the proposed algorithm is a cellular-based multi-objective evolutionary fuzzy system that uses an informed strategy for efficient data processing and a re-initialisation and filtering mechanism to eliminate redundant and low-reliable patterns. The experimental study carried out demonstrates an interpretability improvement of 25% in the extraction of high-interest knowledge by the proposed algorithm, which would make it easier for experts to analyse the problem. Finally, the proposed algorithm is up to five times faster than another proposal on the processing of the same amount of data. In this experimental study, up to 750,000 instances have been processed in approximately four seconds.es_ES
dc.identifier.otherhttps://doi.org/10.1016/j.eswa.2021.115419es_ES
dc.identifier.urihttps://hdl.handle.net/10953/4304
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofExpert Systems with Applications 2021; Volume 183; 115419es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectBig dataData stream mininges_ES
dc.subjectEvolutionary algorithmses_ES
dc.subjectFuzzy logices_ES
dc.subjectEmerging pattern mininges_ES
dc.titleA cellular-based evolutionary approach for the extraction of emerging patterns in massive data streamses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2021-Garcia-ESWA.pdf
Tamaño:
1.29 MB
Formato:
Adobe Portable Document Format
Descripción:
A cellular-based evolutionary approach for the extraction of emerging patterns in massive data streams

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones