RUJA: Repositorio Institucional de Producción Científica

 

Identification of Highlighted Cells in Low-Variance Raster Data Application to Digital Elevation Models

dc.contributor.authorUreña-Cámara, Manuel
dc.contributor.authorMozas-Calvache, Antonio T.
dc.date.accessioned2024-01-29T08:44:14Z
dc.date.available2024-01-29T08:44:14Z
dc.date.issued2023
dc.descriptionLicencia CC BY-4.0es_ES
dc.description.abstractThis study describes a new algorithm developed to detect local cells of minimum or maximum heights in grid Digital Elevation Models (DEMs). DEMs have a low variance in digital levels due to the spatial continuity of the data. Traditional algorithms, such as SIFT, are based on statistical variance, which present issues to determine these highlighted cells. However, one of the main purposes of this identification is the use of these points (cells) to assess the positional accuracy of these products by comparing those extracted from the DEM with those obtained from a more accurate source. In this sense, we developed an algorithm based on a moveable window composed of variable sizes, which is displaced along the image to characterize each set of cells. The determination of highlighted cells is based on the absolute differences of digital levels in the same DEM and compared to those obtained from other DEMs. The application has been carried out using a great number of data, considering four zones, two spatial resolutions, and different definitions of height surfaces. The results have demonstrated the feasibility of the algorithm for the identification of these cells. Thus, this approach expects an improvement in traditional procedures. The algorithm can be used to contrast DEMs obtained from different sources or DEMs from the same source that have been affected by generalization procedures.es_ES
dc.identifier.issn1999-4893es_ES
dc.identifier.otherhttps://doi.org/10.3390/a16060302es_ES
dc.identifier.urihttps://www.mdpi.com/1999-4893/16/6/302es_ES
dc.identifier.urihttps://hdl.handle.net/10953/1724
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofAlgorithms 2023; 16(6):302es_ES
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectimage matchinges_ES
dc.subjectlow-variance feature detectiones_ES
dc.subjectDEM matchinges_ES
dc.subjectDEM quality controles_ES
dc.titleIdentification of Highlighted Cells in Low-Variance Raster Data Application to Digital Elevation Modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2023_Identification of Highlighted Cells in Low-Variance Raster Data Application to Digital Elevation Models.pdf
Tamaño:
4.06 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones