Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/10953/3180
Titre: Stochastic Bernstein polynomials: uniform convergence in probability with rates
Auteur(s): Adell, José A.
Cárdenas-Morales, Daniel
Résumé: We introduce stochastic variants of the classical Bernstein polynomials associated with a continuous function f , built up from a general triangular array of random variables. We discuss the uniform convergence in probability of the approximation process that they represent, providing at the same time rates of convergence. In the particular case in which the triangular array of random variables consists of the uniform order statistics, we give a positive answer to a conjectured raised in Wu and Zhou (Adv. Comput. Math. 46, 8, 2020) about an exponential rate of convergence in probability.
Mots-clés: Stochastic Bernstein polynomials
Uniform convergence in probability
Rates of convergence
Confidence band
Bernstein-Durrmeyer polynomials
Date de publication: 27-fév-2020
metadata.dc.description.sponsorship: This work is partially supported by the Spanish government Research Project PGC2018-097621-B-I00. The second author is also supported by Junta de Andalucía Research Group FQM-0178.
Editeur: Springer
Référence bibliographique: Adell, J.A., Cárdenas-Morales, D. Stochastic Bernstein polynomials: uniform convergence in probability with rates. Adv Comput Math 46, 16 (2020).
Collection(s) :DM-Artículos

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
RUJA.pdfaccepted version131,7 kBAdobe PDFVoir/Ouvrir


Ce document est protégé par copyright


Tous les documents dans RUJA sont protégés par copyright, avec tous droits réservés.