Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10953/2112
Título: | On-line system based on hyperspectral information to estimate acidity, moisture and peroxides in olive oil samples |
Autoría: | Martínez Gila, Diego Manuel Cano Marchal, Pablo Gámez García, Javier Gómez Ortega, Juan |
Resumen: | The analysis of the quality of virgin olive oil involves the determination of a series of properties, such as chemical indexes and organoleptic characteristics. In addition, the determination of these properties in real-time could be useful in order to improve the olive oil extraction process since the process parameters could be regulated with the real-time moisture information. In this paper, the feasibility of using a non-invasive hyperspectral device, in order to determine on-line three parameters of the olive oil (free acidity, peroxide index and moisture) is studied. In order to study the correlation between these parameters and the information obtained by the hyperspectral sensor (absorption level), three different methods were applied: genetic algorithms (GA), least absolute shrinkage and selection operator (LASSO), and successive projection algorithm (SPA). From the experimental results, reduced values in cross validation were obtained and the optimal wavelengths were pointed out. |
Palabras clave: | Olive oil Process control Hyperspectral imaging Machine learning |
Fecha: | 18-jun-2015 |
Patrocinador: | DPI2011-27284, TEP2009-5363 and AGR-6429. |
Editorial: | ELSEVIER |
Citación: | Martínez Gila, D., Cano Marchal, P., Gámez García, J., & Gómez Ortega, J. (2015). On-line system based on hyperspectral information to estimate acidity, moisture and peroxides in olive oil samples. Computers and Electronics in Agriculture, 116, 1–7. https://doi.org/10.1016/j.compag.2015.06.002 |
Aparece en las colecciones: | DIEA-Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
On-line system based on hyperspectral_ACCEPTED_VERSION.pdf | 1,25 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons