Departamento de Física
URI permanente para esta comunidadhttps://hdl.handle.net/10953/33
En esta Comunidad se recogen los documentos generados por el Departamento de Física y que cumplen los requisitos de Copyright para su difusión en acceso abierto.
Examinar
Examinando Departamento de Física por Materia "Computer simulations"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect of excluded volume interactions(AIP Publishing, 2020-01-08) Maroto-Centeno, José-Alberto; Quesada-Pérez, ManuelThe primary goal of this work is to assess the effect of excluded volume interactions on the diffusion controlled release of drug molecules from a spherical, neutral, inert, and cross-linked device of nanometric size. To this end, coarse-grained simulations of the release process were performed. In this way, the inner structure and topology of the polymer network can be explicitly taken into account as well. Our in silico experiments reveal that the boundary condition of constant surface concentration is not appropriate for nanogels. In particular, the predictions based on the perfect sink condition clearly overestimate the fraction of drug released. In addition, these simulations provide values for the release exponent that depends on both the diameter of drug molecules and the number of drug molecules loaded in the matrix, which clearly contrasts with the classical prediction of a constant release exponent. Consequently, the widely used classification of drug release mechanisms based on this kinetic exponent must be extended to include new situations.Ítem Solute diffusion in gels: Thirty years of simulations(Elsevier, 2021-01) Quesada-Pérez, Manuel; Martín-Molina, AlbertoIn this review, we present a summary of computer simulation studies on solute diffusion in gels carried out in the last three decades. Special attention is paid to coarse-grained simulations in which the role of steric and electrostatic interactions on the particle diffusion can be evaluated In addition, other important characteristics of particle diffusion in gels, such as the stiffness of the gel structure and hydrodynamic interactions, can be taken into account through coarse-grained simulations. Emphasis is placed on how simulation results help to test phenomenological models and to improve the interpretation interof experimental results. Finally, coarse-gained simulations have also been employed to study the diffusion controlled release of drugs from gels. We believe that scientific advances in this line will be useful to better understand the mechanisms that control the diffusive transport of molecules in a wide variety of biological systems.