Examinando por Autor "Lobo, Jorge"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Biomagnification and body distribution of ivermectin in dung beetles(www.nature.com, 2020) Verdú, J.R.; Cortez, Vieyle; Ortiz, Antonio J.; Lumaret, Jean-Pierre; Lobo, Jorge; Sánchez-Piñero, FranciscoA terrestrial test system to investigate the biomagnification potential and tissue-specific distribution of ivermectin, a widely used parasiticide, in the non-target dung beetle Thorectes lusitanicus (Jekel) was developed and validated. Biomagnification kinetics of ivermectin in T. lusitanicus was investigated by following uptake, elimination, and distribution of the compound in dung beetles feeding on contaminated faeces. Results showed that ivermectin was biomagnified in adults of T. lusitanicus when exposed to non-lethal doses via food uptake. Ivermectin was quickly transferred from the gut to the haemolymph, generating a biomagnification factor (BMFk) three times higher in the haemolymph than in the gut after an uptake period of 12 days. The fat body appeared to exert a major role on the biomagnification of ivermectin in the insect body, showing a BMFk 1.6 times higher than in the haemolymph. The results of this study highlight that the biomagnification of ivermectin should be investigated from a global dung-based food web perspective and that the use of these antiparasitic substances should be monitored and controlled on a precautionary basis. Thus, we suggest that an additional effort be made in the development of standardised regulatory recommendations to guide biomagnification studies in terrestrial organisms, but also that it is necessary to adapt existing methods to assess the effects of such veterinary medical products.Ítem First assessment of the comparative toxicity of ivermectin and moxidectin in adult dung beetles: Sub-lethal symptoms and pre-lethal consequences(2018-10) Verdú, J.R.; Cortez, Vieyle; Martinez-Pinna, Juan; Ortiz, Antonio; Lumaret, Jean Pierre; Lobo, Jorge; Sánchez-Piñero, Francisco; Numa, CatherineAmong macrocyclic lactones (ML), ivermectin (IVM) and moxidectin (MOX) potentially affect all Ecdysozoan species, with dung beetles being particularly sensitive. The comparative effects of IVM and MOX on adult dung beetles were assessed for the first time to determine both the physiological sub-lethal symptoms and pre-lethal consequences. Inhibition of antennal response and ataxia were tested as two intuitive and ecologically relevant parameters by obtaining the lowest observed effect concentration (LOEC) values and interpolating other relevant toxicity thresholds derived from concentration-response curves (IC50, as the concentration of each ML where the antennal response is inhibited by half; and pLC50, as the quantity of ingested ML where partial paralysis was observed by half of treated individuals) from concentration-response curves. Both sub-lethal and pre-lethal symptoms obtained in this study coincided in that IVM was six times more toxic than MOX for adult dung beetles. Values of LOEC, IC50 and pLC50 obtained for IVM and MOX evaluated in an environmental context indicate that MOX, despite needing more time for its elimination in the faeces, would be half as harmful to dung beetles as IVM. This approach will be valuable to clarify the real impact of MLs on dung beetle health and to avoid the subsequent environmental consequences.Ítem Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study(Elsevier, 2018-03) Verdú, J.R.; Lobo, Jorge; Sánchez-Piñero, Francisco; Gallego, Belén; Numa, Catherine; Lumaret, Jean-Pierre; Cortez, Vieyle; Ortiz, Antonio J.; Tonelli, Mattia; García-Teba, Juan; Rodríguez-Pereiras, Alexandra; Rey, Ana; Durán, JorgeIvermectin is the most common endectocide used to control parasites affecting livestock. Short-term physiological and behavioural effects of ivermectin on dung beetles may have long-term consequences for beetle populations and ecosystem functioning. Long-term effects of the use of ivermectin can be estimated by comparing dung assemblages and ecosystem functions in areas with conventional ivermectin-treated livestock and environmentally similar areas in which livestock are not treated with veterinary medical products (organic farming). In this study, we investigated both short-term and long-term effects of the administration of ivermectin on the characteristics of dung beetle assemblages and the services they provided in a protected area (Doñana National Park, SW Spain). We examined short-term dung colonization, dwelling, relocation, and disaggregation rates and the associations between these processes and the key assemblage parameters of species richness, abundance, biomass and functional diversity. Furthermore, we analysed changes in soil physical-chemical properties and processes. Short-term differences were observed in the total amount of dung relocated by dung beetles at different colonization vs. emigration stages, suggesting that dung beetles in this area were affected by the recent treatments of livestock with ivermectin. Moreover, short-term effects could also be responsible for the significant differences in dung spreading rates between sites. Conventional use of ivermectin disrupted ecosystem functioning by affecting species richness, abundance and biomass. The decrease in diversity parameters was related to a reduction in the functional efficiency, which resulted in the long-term accumulation of dung on the ground and considerable changes in soil functionality.