Examinando por Autor "Fuentes-Conde, Manuel"
Mostrando 1 - 5 de 5
- Resultados por página
- Opciones de ordenación
Ítem An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV(Elsevier, 2018) Fuentes-Conde, Manuel; Vivar, Marta; de la Casa, Juan; Aguilera-Tejero, JorgeThe idea of combining both thermal and photovoltaic collectors in hybrid photovoltaic-thermal (PV-T) modules actually shows a great potential for integration on facades and rooftops of buildings, mainly because of the reduced available space and the benefits of the on-site electricity and thermal generation. The objective of this work is to compare the real performance (experimental data obtained under real sun during a year) of a commercial hybrid PV-T system vs. a simple PV system using microinverters, assessing the suitability of one-unit hybrid PV-T systems vs. two separated units – PV systems + Thermal systems – for building integration. The combined efficiency over the span of a full day could reach values up to 80%, but this apparent high value needs to be analysed in detail. From the experimental results, it can be observed that both systems, PV and PV-T, have a good electrical performance. But the PV-T system output does not benefit from the lower module temperatures that it should achieve from the active cooling in its back, presenting the same performance as the simple PV system. Regarding the microinverters configuration performance, it has been very positive working with high efficiencies above 96%, justifying its use in this type of applications. In conclusion, the commercial PV-T system has not performed as expected, showing problems with the integration of the active cooling in the back of the PV modules. At this moment, and despite the potential of PV-T systems for BIPV due to space limitations, commercial PV-T systems are still far from PV and Thermal systems using separately.Ítem Análisis, caracterización y modelado del comportamiento en exterior de módulos de concentración fotovoltaica(Jaén : Universidad de Jaén, 2014) García-Domingo, Beatriz; Aguilera-Tejero, Jorge; Fuentes-Conde, Manuel; Universidad de Jaén. Departamento de Ingeniería Electrónica y Automática[ES] En la presente Tesis Doctoral se ha profundizado en el estudio y análisis del comportamiento eléctrico en exterior de módulos de tecnología de concentración fotovoltaica (CPV), así como en la dependencia de dicho comportamiento con las condiciones ambientales registradas. Entre ellas, para evaluar el comportamiento eléctrico de los módulos CPV, se han considerado: la irradiancia normal directa (DNJ), la distribución espectral de la irradiancia incidente -a través de dos índices alternativos: average photon energy (APE) y spectral matching ratio (SMR)-, la temperatura ambiente (Tamb) Y la velocidad del viento (Ws). A lo largo de esta Tesis Doctoral se han propuesto dos modelos de predicción de la potencia máxima entregada por los módulos CPV apoyándose en polinomios de regresión y técnicas de regresión lineal múltiple. Asimismo, se han implementado dos modelos basados en la utilizaciónÍtem Lessons learned from the field analysis of PV installations in the Saharawi refugee camps after 10 years of operation(Elsevier, 2018-10) Fuentes-Conde, Manuel; Vivar, Marta; Hosein, Hasena; Aguilera-Tejero, Jorge; Muñoz-Cerón, EmilioEnergy access at refugee camps is one of the main challenges to address in humanitarian response actions, especially on long-term situations. The lack of access to electricity depends, among other factors, on the local natural resources and available technologies. In this sense, solar photovoltaic is one of the most appropriate technologies, especially now with the decrease of the photovoltaic costs. But long-term performance, reliability and social acceptance must be ensured to facilitate the introduction of the technology and its rapid widespread in these humanitarian context. This work presents the results of a field study conducted at the Saharawi refugee camps, inspecting the photovoltaic systems installed in the health institutions after 10 years of use. Results show how despite the good initial system design and high quality of the PV components, the lack of training on operation and maintenance of the PV installations have led to a dramatic reduction of the lifetime of the systems. Strong training programs on basic photovoltaic concepts and operation and maintenance of systems are required to solve this problem and guarantee the long-term functioning of the installations.Ítem Lessons learned from the field analysis of PV installations in the Saharawi refugee camps after 10 years of operation(Elsevier, 2018) Fuentes-Conde, Manuel; Vivar, Marta; Hosein, Hasena; Aguilera-Tejero, Jorge; Muñoz-Cerón, EmilioEnergy access at refugee camps is one of the main challenges to address in humanitarian response actions, especially on long-term situations. The lack of access to electricity depends, among other factors, on the local natural resources and available technologies. In this sense, solar photovoltaic is one of the most appropriate technologies, especially now with the decrease of the photovoltaic costs. But long-term performance, reliability and social acceptance must be ensured to facilitate the introduction of the technology and its rapid widespread in these humanitarian context. This work presents the results of a field study conducted at the Saharawi refugee camps, inspecting the photovoltaic systems installed in the health institutions after 10 years of use. Results show how despite the good initial system design and high quality of the PV components, the lack of training on operation and maintenance of the PV installations have led to a dramatic reduction of the lifetime of the systems. Strong training programs on basic photovoltaic concepts and operation and maintenance of systems are required to solve this problem and guarantee the long-term functioning of the installations.Ítem Power Gain and Daily Improvement Factor in Stand-Alone Photovoltaic Systems With Maximum Power Point Tracking Charge Regulators. Case of Study: South of Spain(American Society of Mechanical Engineers, 2013-11) Muñoz-Rodríguez, Francisco José; Jiménez-Castillo, Gabino; Fuentes-Conde, Manuel; Aguilar-Peña, Juan DomingoThe performance reliability of a stand-alone photovoltaic system (SAPV) depends on the long-term performance of the batteries. In this way, a charge controller becomes an essential device which not only prevents the batteries from suffering deep discharges and overvoltages but also monitors the battery state of charge (SOC) in order to maximize charging efficiency and energy availability. At present, pulse width modulated (PWM) charge regulators dominate the market for this type of component in SAPV systems. However, in recent years, to improve energy management, more manufacturers have developed controllers with strategies for maximum power point tracking (MPPT). PWM charge controllers do not always make optimum use of the available power given by the maximum power point and this gives a loss of power. These power losses depend on battery voltage, irradiance and temperature. However, they can be avoided by using a MPPT charge controller which operates the array at its maximum power point under a range of operating conditions, as well as regulating battery charging. The advantage, in terms of energy gain, provided by this type of charge regulator depends on weather conditions. This paper will study the power gain provided by this type of charge controller, depending on the module temperature and the battery voltage. The paper will, additionally, provide a study of the gain in energy yield, also shown as improvement factor, F, for SAPV systems installed in Jaén (South of Spain). This study may illustrate the behavior of these two types of charge controllers in warm weathers, like Mediterranean climates. Furthermore, it will analyze the suitability of MPPT charge controllers and their benefits in this type of climate. It will be shown that MPPT charge regulator global efficiency constitutes a key issue in making a choice between MPPT and PWM charge regulators. The results given here may be not only of interest for SAPV systems with no access to the electricity grid but also for battery back-up PV grid-connected PV (GCPV) systems.