Examinando por Autor "Farhan, Laith"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications.(Springer, 2023-04-14) Alzubaidi, Laith; Bai, Jinshuai; Al-Sabaawi, Aiman; Santamaria, José; Albahri, Ahmed Shihab; Al-dabbagh, Bashar Sami Nayyef; Fadhel, Mohammed A.; Manoufali, Mohammed; Zhang, Jinglan; Al-Timemy, Ali H.; Duan, Ye; Abdullah, Amjed; Farhan, Laith; Lu, Yi; Gupta, Ashish; Albu, Felix; Abbosh, Amin; Gu, YuantongData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time‑consuming, and error‑prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state‑of‑the‑art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state‑of‑the‑art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self‑Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics‑Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.Ítem Review of deep learning: concepts, CNN architectures, challenges, applications, future directions(Springer, 2021-03-31) Alzubaidi, Laith; Zhang, Jinglan; Humaidi, Amjad J.; Al-Dujaili, Ayad; Duan, Ye; Al-Shamma, Omrad; Santamaria, José; Fadhel, Mohammed A.; Al-Amidie, Muthana; Farhan, LaithIn the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well‑known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State‑of‑the‑Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High‑Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.