Examinando por Autor "Cubillas, Juan J."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem A Machine Learning Model for Early Prediction of Crop Yield, Nested in a Web Application in the Cloud: A Case Study in an Olive Grove in Southern Spain(MDPI, 2022-08-31) Cubillas, Juan J.; Ramos, María I.; Jurado, Juan M.; Feito, Francisco R.Predictive systems are a crucial tool in management and decision-making in any productive sector. In the case of agriculture, it is especially interesting to have advance information on the profitability of a farm. In this sense, depending on the time of the year when this information is available, important decisions can be made that affect the economic balance of the farm. The aim of this study is to develop an effective model for predicting crop yields in advance that is accessible and easy to use by the farmer or farm manager from a web-based application. In this case, an olive orchard in the Andalusia region of southern Spain was used. The model was estimated using spatio-temporal training data, such as yield data from eight consecutive years, and more than twenty meteorological parameters data, automatically charged from public web services, belonging to a weather station located near the sample farm. The workflow requires selecting the parameters that influence the crop prediction and discarding those that introduce noise into the model. The main contribution of this research is the early prediction of crop yield with absolute errors better than 20%, which is crucial for making decisions on tillage investments and crop marketing.Ítem Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees(MDPI, 2020-02) Jurado, Juan M.; Ortega, Lidia; Cubillas, Juan J.; Feito, Francisco R.3D plant structure observation and characterization to get a comprehensive knowledge about the plant status still poses a challenge in Precision Agriculture (PA). The complex branching and self-hidden geometry in the plant canopy are some of the existing problems for the 3D reconstruction of vegetation. In this paper, we propose a novel application for the fusion of multispectral images and high-resolution point clouds of an olive orchard. Our methodology is based on a multi-temporal approach to study the evolution of olive trees. This process is fully automated and no human intervention is required to characterize the point cloud with the reflectance captured by multiple multispectral images. The main objective of this work is twofold: (1) the multispectral image mapping on a high-resolution point cloud and (2) the multi-temporal analysis of morphological and spectral traits in two flight campaigns. Initially, the study area is modeled by taking multiple overlapping RGB images with a high-resolution camera from an unmanned aerial vehicle (UAV). In addition, a UAV-based multispectral sensor is used to capture the reflectance for some narrow-bands (green, near-infrared, red, and red-edge). Then, the RGB point cloud with a high detailed geometry of olive trees is enriched by mapping the reflectance maps, which are generated for every multispectral image. Therefore, each 3D point is related to its corresponding pixel of the multispectral image, in which it is visible. As a result, the 3D models of olive trees are characterized by the observed reflectance in the plant canopy. These reflectance values are also combined to calculate several vegetation indices (NDVI, RVI, GRVI, and NDRE). According to the spectral and spatial relationships in the olive plantation, segmentation of individual olive trees is performed. On the one hand, plant morphology is studied by a voxel-based decomposition of its 3D structure to estimate the height and volume. On the other hand, the plant health is studied by the detection of meaningful spectral traits of olive trees. Moreover, the proposed methodology also allows the processing of multi-temporal data to study the variability of the studied features. Consequently, some relevant changes are detected and the development of each olive tree is analyzed by a visual-based and statistical approach. The interactive visualization and analysis of the enriched 3D plant structure with different spectral layers is an innovative method to inspect the plant health and ensure adequate plantation sustainability.Ítem Use of Data Mining to Predict the Influx of Patients to Primary Healthcare Centres and Construction of an Expert System(MDPI, 2022-11-11) Cubillas, Juan J.; Ramos, María I.; Feito, Francisco R.In any productive sector, predictive tools are crucial for optimal management and decision-making. In the health sector, it is especially important to have information available in advance, as this not only means optimizing resources, but also improving patient care. This work focuses on the management of healthcare resources in primary care centres. The main objective of this work is to develop a model capable of predicting the number of patients who will demand health care in a primary care centre on a daily basis. This model is integrated into a decision support system that is accessible and easy to use by the manager through a web application. In this case, data from a primary care centre in the city of Jaén, Spain, were used. The model was estimated using spatial-temporal training data, the daily health demand data in that centre for five years, and a series of meteorological data. Different regression algorithms have been employed. The workflow requires selecting the parameters that influence the health demand prediction and discarding those that distort the model. The main contribution of this research is the daily prediction of the number of patients attending the health centre with absolute errors better than 3%, which is crucial for decision-making on the sizing of health resources in a primary care health centre