Examinando por Autor "Chen, Cai"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Distributed resilient fusion filtering for nonlinear systems with multiple missing measurements via dynamic event-triggered mechanism(Elsevier, 2023) Hu, Jun; Hu, Zhibin; Caballero-Águila, Raquel; Chen, Cai; Fan, Shuting; Yi, XiaojianThis paper investigates the distributed resilient fusion filtering (DRFF) issue under inverse covariance intersection (ICI) fusion criterion and dynamic event-triggered mechanisms (DETMs), where the physical plant is described by stochastic nonlinear multi-sensor networked systems (MSNSs) with time-varying system parameters and multiple missing measurements (MMMs). The measurements from various sensor nodes to the fusion center may undergo the missing data, where this phenomenon is depicted by means of random variables governed by certain statistical principles. In addition, the DETM is adopted to regulate the communication process from each sensor node to fusion center, which can alleviate the network transmission situations with communication overload and energy consumption limitation. The purpose of the addressed issue is to construct a set of local resilient filters (LRFs) for stochastic nonlinear MSNSs with MMMs via the DETM, which can guarantee that the minimized upper bounds are derived and the desirable filter gain with easy-to-implementation form is given. Subsequently, via the obtained LRFs, a unified framework of the DRFF approach is formulated through using the ICI fusion criterion. In addition, the monotonicity analysis of the obtained upper bound in regard to the triggered parameter is examined by providing rigorous theoretical proof. Finally, the simulations with comparison experiment are provided to illustrate the validity of presented DRFF technique.Ítem Hybrid-attack-resistant distributed state estimation for nonlinear complex networks with random coupling strength and sensor delays(Elsevier, 2024-06-21) Lei, Bingxin; Hu, Jun; Caballero-Águila, Raquel; Chen, CaiIn this paper, a recursive distributed hybrid-attack-resistant state estimation (SE) scheme is proposed for a class of time-varying nonlinear complex networks (NCNs) subject to random coupling strength (RCS) and random sensor delays (RSDs) under hybrid attacks. A hybrid-attack model is considered to characterize the random occurrence of denial-of-service (DoS) attacks and deception attacks. The objective of the problem to be solved is to develop a recursive distributed estimation method such that, in the presence of RCS, RSDs and hybrid attacks, a locally optimized upper bound (UB) on the estimation error covariance (EEC) is ensured. By employing the mathematical induction method, a UB is firstly derived on the EEC. Subsequently, the obtained UB is minimized by appropriately designing the estimator gain (EG). Furthermore, a sufficient criterion guaranteeing the exponential boundedness (EB) of SE error is elaborated in the mean square sense (MSS). Finally, simulation experiments with localization applications of multiple mobile indoor robots are conducted to illustrate the applicability of the proposed SE scheme.