Examinando por Autor "Bohorquez, Patricio"
Mostrando 1 - 10 de 10
- Resultados por página
- Opciones de ordenación
Ítem Flood hazard mapping with distributed hydrological simulations and remote-sensed slackwater sediments in ungauged basins(MDPI, 2021-12-03) del Moral-Erencia, Jose D.; Bohorquez, Patricio; Jiménez-Ruíz, Pedro J.; Pérez-Latorre, Francisco J.We present a basin-scale method to assimilate hydrological data from remote-sensed flood evidence and map civil infrastructures with risk of flooding. As in many rural areas with a semi-arid climate, the studied catchments do not contain stream gauge, and precipitation data does not capture the spatial variability of extreme hydrological events. Remote-sensed flood evidence as slackwater sediments were available at the whole basin, allowing the paleohydrological reconstruction at many sites across the catchment. The agreement between the predicted and observed inundation area was excellent, with an error lower than 15% on average. In addition, the simulated elevations overlapped the observed values in the flooded areas, showing the accuracy of the method. The peak discharges that provoked floods recorded the spatial variability of the precipitation. The variation coefficients of the rainfall intensity were 30% and 40% in the two studied basins with a mean precipitation rate of 3.1 and 4.6 mm/h, respectively. The assumption of spatially uniform precipitation leads to a mean error of 20% in evaluating the local water discharges. Satellite-based rainfall underpredicted the accumulated precipitation by 30–85.5%. Elaborating an inventory of the civil infrastructures at risk was straightforward by comparing the water surface elevation and transport network. The reconstructed maps of rainfall rate were used in the distributed hydrological model IBERPLUS to this end. Recent flood events that overtopped the infrastructures at risk verified our predictions. The proposed research methods can be easily applied and tested in basins with similar physical characteristics around the Mediterranean region.Ítem Hydraulic control on the development of megaflood runup deposits(Elsevier, 2020-04-07) Carling, Paul A.; Bohorquez, Patricio; Fan, XuanmeiRunup deposits are veneers of alluvium that drape floodway valley side walls above the height of giant bars deposited during megafloods. Given sufficient sediment supply, the highest giant bars, deposited in re-entrants along the flood margins, tend to grow to close to the maximum time-averaged water level of the flood. However, considerable fluctuations in the water level, caused by sediment-charged floodwaters surging over shorter time-scales, are responsible for the higher runup deposits. Here, the theoretical calculations of the expected maximum runup heights are compared with surveyed heights of six runup deposits in the Chuja Valley, Altai, Siberia. The limitations and strengths of the theoretical approach are identified and modified parameters proposed that can be used to provide partial explanation for the differences between theory and observation. Conceptually, surging can be viewed as caused by four interrelated elements: (1) propagation of undular weir flow; (2) macroturbulence; (3) flow separation; and (4) standing, reflection and interference waves. The heights of the observed runup deposits primarily are related to the depth of the flood water above the bar tops and, to a lesser extent, the Froude number, but tend to lie below the maximum surge heights of the modelled flow. Changes in the effective geometry of the flow re-entrant, mediating flow patterns, as water depth increases is likely the cause of mismatch between theory and observation. Runup deposits may also lie at lower elevations than predicted because of sediment supply considerations and the return flow of surges ‘combing’ down deposits. Nonetheless, the difference between observed and predicted runup heights is often only a few tens of metres such that, for deep floods, runup deposits potentially are useful palaeostage indicators. The analysis also indicates that upper-stage plane beds do not dominate bar tops, rather bar top deposition was primarily to lower-stage plane beds, from dense suspensions.Ítem Last ice-dammed lake in the Kuray basin, Russian Altai: New results from multidisciplinary research(Elsevier, 2020-04-19) Agatova, A. R.; Nepop, R. K.; Carling, Paul A.; Bohorquez, Patricio; Khazin, L.B.; Zhdanova, A.N.; Moska, P.Results from geomorphological, sedimentological and geochronological analyses, together with micropaleontological and mineralogical characteristics of lacustrine deposits in five locations within the Kuray intermountain depression, southeast Altai, mountains of south Siberia, support the thesis of repeated formations of ice-dammed lakes during MIS-2 and their draining by high energy floods. Our data suggest that the timing of one of the last cataclysmic draining events in the area can be estimated by an Optically-Stimulated Luminescence (OSL) age of 19.0 ± 1.1 ka for a sandy layer at the top of the diluvial (i.e. large flood) deposit, revealed in a sedimentary sequence of the 1570 m a.s.l. strandline – one of the lowest preserved strandlines in the western part of the basin. New OSL and radiocarbon ages, augmenting previously published dates, indicate that the last lake to occupy the Kuray depression occurred around 19–16 ka with a depth of at least 170 m in the central part of the basin and to a depth of no less than 220 m near the glacier dam. Lacustrine deposits are represented by two horizons of sandy clays separated by interlayers of mixed-size sands. The mineralogical data, supported by analysis of sedimentological and micropaleontological records, indicate accumulation of a lower lacustrine horizon in a deeper reservoir. Finding of Leucocythere sp.1, Leucocythere sp.2, and Leucocythere dorsotuberosa ostracod species in lacustrine deposits characterizes these reservoirs as periglacial freshwater cold and deep lakes. The presence of well-crystallized mica and chlorite in lacustrine silts and clays from the lower lacustrine horizon indicates cold, dry conditions at the time of their formation, as well as a predominance of physical weathering of rocks within the denudation area. After an abrupt dropping of the lake level around 16 ka, determined from OSL dating, the lake never recovered its former depth. The available radiocarbon ages for organic material in subaerial deposits within the study area and the new OSL ages suggest that the last ice-dammed lake in the Kuray basin was drained between ~16.7 and 9.9 ka. The presence of this lake might explain the absence of late Paleolithic surface finds within the basin that remained generally unsuitable for human habitation until its final drying. The last outburst flood passed along the Chuya and Katun river valleys, which had been already carved by older cataclysmic floods, but did not significantly affect the topography downstream of the Kuray-Chuya intermountain depressions. We numerically simulated the draining of a palaeolake in the Kuray basin with the water level 1650 m a.s.l. (maximal depth about 220 m near the dam) with different scenarios of breaching the ice dam. In contrast to a relatively gradual breach of the ice dam due to thermal erosion, an instantaneous dam break due to structural failure can cause an outburst flood with a peak discharge of around 2 × 106 m3 s−1. The high speeds of the water flow, 1.9–5.6 m s−1, with the maximum Froude numbers of 0.06–0.22, and peak Shields values of 0.03–0.25 indicate competence to mobilize gravel. Generally, the simulated flow remained subcritical, suggesting that bedforms developed under supercritical flows, such as antidunes, could not have developed, although the development of dunes cannot be precluded. Our data also contribute to the issue of correlating the low lake strandlines in the Kuray basin with the landforms associated with cataclysmic outburst floods.Ítem Nature-based solutions for flood mitigation and soil conservation in a steep-slope olive-orchard catchment (Arquillos, Spain)(MDPI, 2023-02-23) Bohorquez, Patricio; Perez-Latorre, Francisco J.; Gonzalez-Planet, Inmaculada; Jimenez-Melero, Raquel; Parra, GemaThe frequency and magnitude of flash floods in the olive orchards of southern Spain have increased because of climate change and unsustainable olive-growing techniques. Affected surfaces occupy >85% of the rural regions of the Upper Guadalquivir Basin. Dangerous geomorphic processes record the increase of runoff, soil loss and streamflow through time. We report on ripple/dune growth over a plane bed on overland flows, deep incision of ephemeral gullies in olive groves and rock-bed erosion in streams, showing an extraordinary sediment transport capacity of sub-daily pluvial floods. We develop a novel method to design optimal solutions for natural flood management and erosion risk mitigation. We adopt physical-based equations and build a whole-system model that accurately reproduces the named processes. The approach yields the optimal targeted locations of nature-based solutions (NbSs) for active flow-control by choosing the physical-model parameters that minimise the peak discharge and the erosion-prone area, maximising the soil infiltration capacity. The sub-metric spatial resolution used to resolve microtopographic features of terrains/NbS yields a computational mesh with millions of cells, requiring a Graphics Processing Unit (GPU) to run massive numerical simulations. Our study could contribute to developing principles and standards for agricultural-management initiatives using NbSs in Mediterranean olive and vineyard orchards.Ítem Revisiting the dynamics of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, central Asia(Elsevier, 2019-07-09) Bohorquez, Patricio; Jimenez-Ruiz, Pedro J.; Carling, Paul A.In this work, we present a whole system model of megafloods from catastrophic ice-dam failure in the late Pleistocene that comprises the study of the dynamics of the glacial lake, the propagation of the flood wave downstream of the dam, and an approximation to the ice breach process. The ice-dam incision rate was simply considered an unknown constant, which was varied systematically to best fit the maximum altitude of the simulated water surface and the paleostage indicators in the downstream valley during the transient megaflood. Hence, the hydrograph resulting from the breach of the ice dam was not prescribed but was an output of the paleohydraulic reconstruction. By considering two possible configurations of the breach in the ice dam, i.e. full or partial removal of the ice, we constrained the incision rate in the narrow range of 28 − 42 m ⋅ h−1. Two connected glacial lakes, Kuray and Chuja, released 95% of the stored water volume (i.e., 564 km3) in 33.8 hours. A peak discharge of 10.5 M m3 ⋅ s−1 was required to form numerous giant bars and run-up deposits in the Chuja and Katun valleys. The peak streamflow occurred after 11 h when 45% of the available lake volume had been evacuated from the Kuray and Chuja basins. Further verification of the reconstructed megaflood was achieved by studying the computed hydraulic conditions during the lake draining that justify the existence and orientation of several fields of subaqueous gravel-dunes in the glacial lake. Complex spatiotemporal patterns during the recession stage of the flood built most of the fields of bedforms. In terms of nondimensional parameters, the Froude and Shields numbers that formed the dune fields were similar to those observed in large sandy rivers, but the flow was undoubtedly unsteady and two-dimensional. We conclude by noting that the extensions of the simulated area cannot be cropped or analysed by independent parts in order to predict the formation of the most relevant geological records due to the unsteady, two-dimensional nature of the flow motion and the development of backwater effects in the drainage network. Lastly, the paleohydrological reconstruction of a megaflood has helped not only to infer the dynamics of the event but also to retrodict the mean parameters of the ice-dam failure mechanism.Ítem Slackwater sediments record the increase in sub-daily rain flood due to climate change in a European Mediterranean catchment(Springer, 2020-06-04) Moral-Erencia, Jose D.; Bohorquez, Patricio; Jimenez-Ruiz, Pedro J.; Pérez-Latorre, Francisco J.In this work we propose an original method to determine the magnitude of the discharge, the intensity of the precipitation and the duration of short-rain floods in small torrential basins (< 2000 km2), extending our earlier approach for long-rain floods in larger basins (Water 2016, 8, 526; Remote Sens. 2017, 9, 727). The studied areas are located in ungauged catchments with high erosion rates where torrents deposit slackwater sediments near the outlet of the basins. Such deposits and erosive morphologies allow us to analyse sub-daily extreme hydrological events by combining standard techniques in paleohydrology, the kinematic wave method and remote-sensed paleostage indicators. The formulation was correctly verified in extreme events through reliable gauge measurements and a high-resolution distributed hydrological model showing the accuracy of our calculations (10% ≤ relative error ≤ 22%). In catchments of the European Mediterranean region where the frequency and magnitude of short-rain floods are increasing (e.g. the Guadalquivir Basin), the main hydrological variables can thus be quantified post-event using the proposed approach. The outputs may serve to construct a new database for this kind of events complementary to the existing daily database for long-rain floods (> 24 h). The need is evident for safety designs of civil infrastructures and flood risk mitigation strategies in the current climate change scenario.Ítem Technological advances to rescue temporary and ephemeral wetlands: reducing their vulnerability, making them visible(MDPI, 2023-07-15) Jimenez-Melero, Raquel; Bohorquez, Patricio; Gonzalez-Planet, Inmaculada; Perez-Latorre, Francisco J.; Parra, GemaMediterranean temporary ponds are a priority habitat according to the Natura 2000 network of the European Union, and complete inventories of these ecosystems are therefore needed. Their small size, short hydroperiod, or severe disturbance make these ponds undetectable by most remote sensing systems. Here we show, for the first time, that the distributed hydrologic model IBER+ detects ephemeral and even extinct wetlands by fully exploiting the available digital elevation model and resolving many microtopographic features at drainage basin scales of about 1000 km2. This paper aims to implement a methodology for siting flood-prone areas that can potentially host a temporary wetland, validating the results with historical orthophotos and existing wetlands inventories. Our model succeeds in dryland endorheic catchments of the Upper Guadalquivir Basin: it has detected 89% of the previously catalogued wetlands and found four new unknown wetlands. In addition, we have found that 24% of the detected wetlands have disappeared because of global change. Subsequently, environmental managers could use the proposed methodology to locate wetlands quickly and cheaply. Finding wetlands would help monitor their conservation and restore them if needed.Ítem Technological Advances to Rescue Temporary and Ephemeral Wetlands: Reducing Their Vulnerability, Making Them Visible(2023-07) Jiménez-Melero, Raquel; Bohorquez, Patricio; González-Planet, Inmaculada; Pérez-Latorre, Francisco; Parra, GemaMediterranean temporary ponds are a priority habitat according to the Natura 2000 network of the European Union, and complete inventories of these ecosystems are therefore needed. Their small size, short hydroperiod, or severe disturbance make these ponds undetectable by most remote sensing systems. Here we show, for the first time, that the distributed hydrologic model IBER+ detects ephemeral and even extinct wetlands by fully exploiting the available digital elevation model and resolving many microtopographic features at drainage basin scales of about 1000 km2. This paper aims to implement a methodology for siting flood-prone areas that can potentially host a temporary wetland, validating the results with historical orthophotos and existing wetlands inventories. Our model succeeds in dryland endorheic catchments of the Upper Guadalquivir Basin: it has detected 89% of the previously catalogued wetlands and found four new unknown wetlands. In addition, we have found that 24% of the detected wetlands have disappeared because of global change. Subsequently, environmental managers could use the proposed methodology to locate wetlands quickly and cheaply. Finding wetlands would help monitor their conservation and restore them if needed.Ítem The fascination of a shallow-water theory for the formation of megaflood-scale dunes and antidunes(Elsevier, 2019-04-12) Bohorquez, Patricio; Cañada-Pereira, Pablo; Jimenez-Ruiz, Pedro J.; del Moral-Erencia, Jose D.Exceptional megaflood-scale bedforms on Earth are commonly associated with the catastrophic draining of glacial lakes in the late Pleistocene. The widest studied events have been the Missoula and Altai floods with 300–700 m flow depth, 1–20 m bedform height and 10–300 m wavelength. Nowadays, the Saint-Venant equations have succeeded at simulating the catastrophic glacial-lake drainage process numerically, but we still lack a depth-averaged morphodynamic theory able to predict the growth of dunes and antidunes. The disparity of spatial scales in megafloods prevents the use of non-depth-averaged rotational flow equations, motivating the present shallow-water theory for the formation of megaflood-scale bedforms. We adopt a non-equilibrium sediment transport equation rooted in Einstein's pioneering work. Here we prove that the bed instability triggers to form dunes and antidunes simply by lagging the entrainment term for sediment mass conservation, or the bottom shear stress, with respect to the depth-averaged flow velocity. We formalise this result using a linear stability theory that captures the existence regions of dune and antidune in addition to the roll wave instability. Furthermore, in the spirit of Kennedy (Annu. Rev. Fluid Mech., vol. 1, 1969, pp. 147–168), we derive a closed-form solution of growth rate and wave speed of the bedform. The nondimensional groups controlling the linear instabilities are the Froude number, ℱr, the Shields parameter, Sh, and the grain roughness relative to flow depth, Subsequently, we simulate the drainage of the largest Missoula flood numerically to explain the formation of giant antidunes in the Camas Prairie (Montana, US) during the late stage of the megaflood. Also considered are large fields of gravel dunes in the Kuray-Chuja Lake Basin (Altai Mountains, Siberia). The simulated hydraulic conditions over bedforms in both basins yield values of the nondimensional parameters that lie in the theoretical region of dunes and antidunes according to the proposed theory and in situ measurements in sandy rivers and flume experiments.Ítem The variability of antidune morphodynamics on steep slopes(Wiley, 2021-03-09) Pascal, Ivan; Ancey, Christophe; Bohorquez, PatricioSteep streams on rough beds are generally characterised by supercritical flow condi-tions under which antidunes can develop and migrate over time. In this paper, wepresent flume experiments that we conducted to investigate the variability ofantidune geometry and migration celerity, a variability observed even under steady-state conditions. Quantifying this variability is important for river morphodynamics, hydraulics and paleohydraulics. We imposed moderate to intense bedload transportrates at the flume inlet to assess their effects on antidune morphodynamics for near-constant values of the mean bed slope. The bed elevation profile was monitored foreach experiment with high spatial and temporal resolution. Upstream migrating anti-dunes were observed along most of the flume length. Considering single values forwavelength and celerity was not sufficient to describe the antidune behaviour inthese experiments. By using spectral analysis, we identified the variability ranges ofbedform shape and celerity. Interestingly, migration celerity increased with increasingantidune wavelength; the opposite trend was reported for dunes in other studies.Antidunes were more uniform and migrated faster for higher sediment feeding rates.Scaling the spectra made it possible to find a general dimensionless relationshipbetween antidune wavelength and celerity. This framework provides a novel methodfor estimating the mean bedload transport rate in the presence of upstream migratingantidune.