Departamento de Ingeniería de Telecomunicación
URI permanente para esta comunidadhttps://hdl.handle.net/10953/39
En esta Comunidad se recogen los documentos generados por el Departamento de Ingeniería de Telecomunicación y que cumplen los requisitos de Copyright para su difusión en acceso abierto.
Examinar
Examinando Departamento de Ingeniería de Telecomunicación por Autor "De La Torre Cruz, Juan"
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Ítem An ambient denoising method based on multi‑channel non‑negative matrix factorization for wheezing detection(Springer Netherlands, 2022-07-29) Muñoz Montoro, Antonio Jesús; Revuelta Sanz, Pablo; Martínez Muñoz, Damián; De La Torre Cruz, Juan; Ranilla, JoséIn this paper, a parallel computing method is proposed to perform the background denoising and wheezing detection from a multi-channel recording captured during the auscultation process. The proposed system is based on a non-negative matrix factorization (NMF) approach and a detection strategy. Moreover, the initialization of the proposed model is based on singular value decomposition to avoid dependence on the initial values of the NMF parameters. Additionally, novel update rules to simultaneously address the multichannel denoising while preserving an orthogonal constraint to maximize source separation have been designed. The proposed system has been evaluated for the task of wheezing detection showing a significant improvement over state-of-the-art algorithms when noisy sound sources are present. Moreover, parallel and high-performance techniques have been used to speedup the execution of the proposed system, showing that it is possible to achieve fast execution times, which enables its implementation in real-world scenarios.Ítem An incremental algorithm based on multichannel non-negative matrix partial co-factorization for ambient denoising in auscultation(Elsevier, 2021-11) De La Torre Cruz, Juan; Cañadas Quesada, Francisco Jesús; Martínez Muñoz, Damián; Ruiz Reyes, Nicolás; García Galán, Sebastián; Carabias Orti, Julio JoséOne of the major current limitations in the diagnosis derived from auscultation remains the ambient noise surrounding the subject, which prevents successful auscultation. Therefore, it is essential to develop robust signal processing algorithms that can extract relevant clinical information from auscultated recordings analyzing in depth the acoustic environment in order to help the decision-making process made by physicians. The aim of this study is to implement a method to remove ambient noise in biomedical sounds captured in auscultation. We propose an incremental approach based on multichannel non-negative matrix partial co-factorization (NMPCF) for ambient denoising focusing on high noisy environment with a Signal-to-Noise Ratio (SNR) 6 5 dB. The first contribution applies NMPCF assuming that ambient noise can be modelled as repetitive sound events simultaneously found in two single-channel inputs captured by means of different recording devices. The second contribution proposes an incremental algorithm, based on the previous multichannel NMPCF, that refines the estimated biomedical spectrogram throughout a set of incremental stages by eliminating most of the ambient noise that was not removed in the previous stage at the expense of preserving most of the biomedical spectral content. The ambient denoising performance of the proposed method, compared to some of the most relevant state-of-the-art methods, has been evaluated using a set of recordings composed of biomedical sounds mixed with ambient noise that typically surrounds a medical consultation room to simulate high noisy environments with a SNR from -20 dB to -5 dB. In order to analyse the drop in denoising performance of the evaluated methods when the effect of the propagation of the patient’s body material and the acoustics of the room is considered, results have been obtained with and without taking these effects into account. Experimental results report that: (i) the performance drop suffered by the proposed method is lower compared to MSS and NLMS when considering the effect of the propagation of the patient’s body material and the acoustics of the room active; (ii) unlike what happens with MSS and NLMS, the proposed method shows a stable trend of the average SDR and SIR results regardless of the type of ambient noise and the SNR level evaluated; and (iii) a remarkable advantage of the proposed method is the high robustness of the acoustic quality of the estimated biomedical sounds when the two single-channel inputs suffer from a delay between them.Ítem Combining a recursive approach via non-negative matrix factorization and Gini index sparsity to improve reliable detection of wheezing sounds(Elsevier, 2020-06-01) De La Torre Cruz, Juan; Cañadas Quesada, Francisco Jesús; Carabias Orti, Julio José; Vera Candeas, Pedro; Ruiz Reyes, NicolásAuscultation constitutes a fast, non-invasive and low-cost tool widely used to diagnose respiratory diseases in most of the health centres. However, the acoustic training and expertise acquired by the physician is still crucial to provide a reliable diagnosis of the status of the lung. Each wrong diagnosis increases the risk to the health of patients and the costs associated with the treatment of the disease detected. A wheezing detection system can be useful to the physician to minimize the subjectivity of the interpretation of the breathing sounds, misdiagnoses due to stress and elucidating complex acoustic scenes (such as louder background noises). Highlight that the presence of wheeze sounds is one of the main indicators of respiratory disorders from airway obstructions. This work presents an expert and intelligent system to detect wheeze sounds based on a recursive algorithm that combines orthogonal non-negative matrix factorization (ONMF) and the sparsity descriptor Gini index. The recursive algorithm is composed of four stages. The first stage is based on ONMF modelling to factorize the spectral bases as dissimilar as possible. The second stage clusters the ONMF bases into two categories: wheezing and normal breath. The third stage proposes a novel stopping criterion that controls the loss of wheezing spectral content at the expense of removing normal breath content in the recursive algorithm. Finally, the fourth stage determines the patient’s condition to locate the temporal intervals in which wheeze sounds are active for unhealthy patients. Experimental results report that the proposed method: (i) provides the best detection performance compared to the recent state-of-the-art wheezing detection approaches, achieving the highest robustness in noisy environments; and (ii) reliably distinguishes the patient’s condition (healthy/unhealthy). The strengths of the proposed method are the following: (i) its unsupervised nature since it does not depend on any training stage to learn in advanced the sounds of interest (wheezing). This fact could make this method attractive to be used in clinical settings because wheezing sound databases are often unavailable; and (ii) the modelling of the spectral behaviour by means of a common feature, the sparsity, that represents the typically energy distributions shown by most of the wheeze and normal breath sounds.Ítem Unsupervised detection and classification of heartbeats using the dissimilarity matrix in PCG signals(Elsevier, 2022-06) De La Torre Cruz, Juan; Martínez Muñoz, Damián; Ruiz Reyes, Nicolás; Muñoz Montoro, Antonio Jesús; Puentes Chiachio, Miguel; Canadas Quesada, Francisco JesúsBackground and objective: Auscultation is the first technique applied to the early diagnose of any cardiovascular disease (CVD) in rural areas and poor-resources countries because of its low cost and noninvasiveness. However, it highly depends on the physician’s expertise to recognize specific heart sounds heard through the stethoscope. The analysis of phonocardiogram (PCG) signals attempts to segment each cardiac cycle into the four cardiac states (S1, systole, S2 and diastole) in order to develop automatic systems applied to an efficient and reliable detection and classification of heartbeats. In this work, we propose an unsupervised approach, based on time-frequency characteristics shown by cardiac sounds, to detect and classify heartbeats S1 and S2. Methods: The proposed system consists of a two-stage cascade. The first stage performs a rough heartbeat detection while the second stage refines the previous one, improving the temporal localization and also classifying the heartbeats into types S1 and S2. The first contribution is a novel approach that combines the dissimilarity matrix with the frame-level spectral divergence to locate heartbeats using the repetitiveness shown by the heart sounds and the temporal relationships between the intervals defined by the events S1/S2 and non-S1/S2 (systole and diastole). The second contribution is a verification-correctionclassification process based on a sliding window that allows the preservation of the temporal structure of the cardiac cycle in order to be applied in the heart sound classification. The proposed method has been assessed using the open access databases PASCAL, CirCor DigiScope Phonocardiogram and an additional sound mixing procedure considering both Additive White Gaussian Noise (AWGN) and different kinds of clinical ambient noises from a commercial database. Results: The proposed method outperforms the detection and classification performance of other recent state-of-the-art methods. Although our proposal achieves the best average accuracy for PCG signals without cardiac abnormalities, 99.4% in heartbeat detection and 97.2% in heartbeat classification, its worst average accuracy is always above 92% for PCG signals with cardiac abnormalities, signifying an improvement in heartbeat detection/classification above 10% compared to the other state-of-the-art methods evaluated. Conclusions: The proposed method provides the best detection/classification performance in realistic scenarios where the presence of cardiac anomalies as well as different types of clinical environmental noises are active in the PCG signal. Of note, the promising modelling of the temporal structures of the heart provided by the dissimilarity matrix together with the frame-level spectral divergence, as well as the removal of a significant number of spurious heart events and recovery of missing heart events, both corrected by the proposed verification-correction-classification algorithm, suggest that our proposal is a successful tool to be applied in heart segmentation.