Departamento de Ingeniería Mecánica y Minera
URI permanente para esta comunidadhttps://hdl.handle.net/10953/41
En esta Comunidad se recogen los documentos generados por el Departamento de Ingeniería Mecánica y Minera y que cumplen los requisitos de Copyright para su difusión en acceso abierto.
Examinar
Examinando Departamento de Ingeniería Mecánica y Minera por Autor "Armas, Octavio"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem A comparative study of performance and regulated emissions in a medium-duty diesel engine fueled with sugarcane diesel-farnesane and sugarcane biodiesel-LS9(ELSEVIER, 2019-06-01) Soto, Felipe; Marques, Gian; Torres-Jiménez, Eloísa; Vieira, Bráulio; Lacerda, André; Armas, Octavio; Guerrero-Villar, FranciscaTwo sugarcane biofuels and mineral diesel fuel are tested under full load conditions, under the same values of performance and under the European Transient Cycle on an engine test bench, without any modifications to the ECU. The target is to compare engine performance and emissions. At full load, engine performance varies due to the variation in LHV. Under the same values of performance, the sugarcane biodiesel-LS9 provides the lowest THC emissions. The higher CN and exhaust gas recirculation of the sugarcane biodiesel-LS9 and the higher H/C ratio of the sugarcane diesel-farnesane compared to the diesel S50 provide a NOx reduction. Neither the increment in bsfc nor the increment of %EGR for the sugarcane biodiesel-LS9 deteriorate the combustion, so its CO emissions are lower. The sugarcane biodiesel-LS9 leads to the lowest NOx and PM specific emissions under transient operation, followed by the sugarcane diesel-farnesane. The THC and CO specific emissions are higher for the biofuels in comparison to the diesel S50. The main reason for these results is the impact of the properties of the biofuels on the ECU response However, both biofuels produce less harmful emissions at idle conditions, which supports their usage to reduce exhaust emissions in urban areas.Ítem Methodology improvements to simulate performance and emissions of engine transient cycles from stationary operating modes: A case study applied to biofuels(Elsevier, 2022-03-15) Cruz-Peragón, Fernando; Torres-Jiménez, Eloísa; Lešnik, Luka; Armas, OctavioIn the present study engine/vehicle responses from a standardized transient test cycle are estimated using 13 stationary operating regimes following a previously developed methodology. The main advantage of the methodology tested is that allows obtaining an estimation of transient parameters in a stationary test bench, which requirements are much less demanding than those of the transient test bench. The objectives are: in one hand, to demonstrate that the methodology correctly estimates engine responses regardless of the fuel tested, as it is proposed in a previous paper and, on the other hand, to improve the methodology and the accuracy of the estimated parameters. The fuels tested are renewable fuels from different raw materials (biodiesel from rapeseed, sunflower, and soybean), and diesel fuel as the reference. Biodiesels were tested neat and blended (30% v/v) with diesel fuel. The engine is a common-rail light-duty one, and the standardized testing procedure used to illustrate the implementation of the methodology is the New European Driving Cycle (NEDC). Two design of experiments (DoE) of 13 runs each were analyzed. One of the DoE tested was proposed for characterizing the NEDC, referred as to CTDoE design, while the other one is a five-level fractional factorial design (FFDoE) that adequately matches the optimality criteria of orthogonality, D-optimal criterion, rotatability, and space-filling. The original methodology was improved by the implementation of a new fitting function that simulates the cold start effect over the engine parameters and by a new definition of the boundary in the [n,M] domain. These improvements showed significantly higher accuracy of the estimated engine parameters obtained, both instantaneous and accumulated, respect to the original methodology. The results obtained based on the application of the FFDoE design support the feasibility of the methodology tested. Engine performance and regulated emissions responses, such as intake air and fuel mass flow rate, thermomechanical exergy rate, exhaust gas residual heat rate, total hydrocarbons (THC), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM) emissions from a transient test were instantaneously and cumulatively predicted with high accuracy using the engine responses from 13 steady-state operating modes.