Departamento de Ingeniería Química, Ambiental y de los Materiales
URI permanente para esta comunidadhttps://hdl.handle.net/10953/42
En esta Comunidad se recogen los documentos generados por el Departamento de Ingeniería Química, Ambiental y de los Materiales y que cumplen los requisitos de Copyright para su difusión en acceso abierto.
Examinar
Examinando Departamento de Ingeniería Química, Ambiental y de los Materiales por Autor "Azapagic, Adisa"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Enhanced data envelopment analysis for sustainability assessment: Anovel methodology and application to electricity technologies(Elsevier Ltd, 2016-07-12) Galán-Martín, Ángel; Guillén-Gosálbez, Gonzalo; Stamford, Laurence; Azapagic, AdisaQuantifying the level of sustainability attained by a system is a challenging task due to the need to consider a wide range of economic, environmental and social aspects simultaneously. This work explores the application of data envelopment analysis (DEA) to evaluate the sustainability ‘efficiency’ of a system. We propose an enhanced DEA methodology that uses the concept of ‘order of efficiency’ to compare and rank alternatives according to the extent to which they adhere to sustainability principles. The capabilities of the proposed approach are illustrated through a sustainability assessment of different technologies for electricity generation in United Kingdom. In addition to screening the alternatives based on sustainability principles, enhanced DEA provides improvement targets for the least sustainable alternatives that, if achieved, would make them more sustainable. The enhanced DEA shows clearly the ultimate distance to sustainability, helping industry and policy makers to improve the efficiency of technologies, products and policies.Ítem Time for global action: An optimised cooperative approach towards effective climate change mitigation(Royal Society of Chemistry, 2017-10-11) Galán-Martín, Ángel; Pozo, Carlos; Azapagic, Adisa; Grossmann, Ignacio; Mac Dowell, Niall; Guillén-Gosálbez, GonzaloThe difficulties in climate change negotiations together with the recent withdrawal of the U.S. from the Paris Agreement call for new cooperative mechanisms to enable a resilient international response. In this study we propose an approach to aid such negotiations based on quantifying the benefits of interregional cooperation and distributing them among the participants in a fair manner. Our approach is underpinned by advanced optimisation techniques that automate the screening of millions of alternatives for differing levels of cooperation, ultimately identifying the most cost-effective solutions for meeting emission targets. We apply this approach to the Clean Power Plan, a related act in the U.S. aiming at curbing carbon emissions from electricity generation, but also being withdrawn. We find that, with only half of the states cooperating, the cost of electricity generation could be reduced by US$41 billion per year, while simultaneously cutting carbon emissions by 68% below 2012 levels. These win-win scenarios are attained by sharing the emission targets and trading electricity among the states, which allows exploiting regional advantages. Fair sharing of dividends may be used as a key driver to spur cooperation since the global action to mitigate climate change becomes beneficial for all participants. Even if global cooperation remains elusive, it is worth trying since the mere cooperation of a few states leads to significant benefits for both the U.S. economy and the climate. These findings call on the U.S. to reconsider its withdrawal but also boost individual states to take initiative even in the absence of federal action.