Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/10953/1132
Titre: Coherent States for infinite homogeneous waveguide arrays
Auteur(s): Guerrero, Julio
López-Ruiz, Francisco F.
Résumé: Perelomov coherent states for equally spaced, infinite homogeneous waveguide arrays with Euclidean E(2) symmetry are defined, and new resolutions of the identity are constructed in Cartesian and polar coordinates. The key point to construct these resolutions of the identity is the fact that coherent states satisfy Helmholtz equation (in coherent states labels) an thus a non-local scalar product with a convolution kernel can be introduced which is invariant under the Euclidean group. It is also shown that these coherent states for the Eucliean E(2) group have a simple and natural physical realization in these waveguide arrays.
Mots-clés: Coherent states,
Euclidean group
waveguide arrays
Helmholtz equation
Date de publication: 2021
metadata.dc.description.sponsorship: Spanish MICINN through the project PGC2018-097831-B-I00 and Junta de Andalucı́a through the project FEDER/UJA-1381026.
Collection(s) :DM-Artículos

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
CoherentStates-E2.pdf282,91 kBAdobe PDFMiniature
Voir/Ouvrir


Ce document est protégé par copyright


Ce document est autorisé sous une licence de type Licence Creative Commons
Creative Commons