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Abstract

We analyse the controlled generation of bubbles of a given size at a determined bubbling rate in a co-flowing
water stream forcing the gas flow. The temporal evolution of the bubble size, R(t), the air flow rate, Qa(t),
and the pressure evolution inside the bubble, pb(t), during the bubbling process are reported. To that aim,
the temporal evolution of the bubble shape and the pressure inside the air feeding chamber, pc(t), where a
harmonic perturbation is induced using a loudspeaker, are obtained from high-speed images synchronized
with pressure measurements. A model is developed to describe the unsteady motion of the gas stream
along the injection needle, coupled with the Rayleigh-Plesset equation for the growing bubble, allowing us
to obtain pb(t). Thus, the minimum pressure amplitudes required inside the forming bubble to control their
size and bubbling frequency are provided as a function of the gas flow rate, the liquid velocity, uw, and the
forcing frequency, ff . Two different behaviors have been observed, depending on the liquid-to-gas velocity
ratio, Λ = uw/ua. For small enough values of Λ, the critical pressure amplitude is given by ps ∼ ρa c ua St

3
f ,

associated to a rapid pressure increase taking place during an interval of time of the order of the acoustic
time. However, for larger values of Λ, ps ∼ ρ u2

w St3f Λ
−1/5 We−1/4. Here ρ and ρa are the liquid and gas

densities respectively, c the speed of sound in air and Stf = ffro/uw and We = ρu2
wro/σ the Strouhal and

Weber numbers, where ro denotes the outer radius of the injector.
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1. Introduction

The generation of bubbles by injection of a gas stream into a co-flowing liquid is an important problem
that has been widely studied (see Chuang and Goldschmidt, 1970; Og̃uz and Prosperetti, 1993; Sevilla et al.,
2005; Gordillo et al., 2007, among others). This configuration allows the injection of much larger gas flow
rates than in the case of releasing gas into a still liquid from a submerged orifice, avoiding the irregular flow
regimes and the bubble coalescence (Kumar and Kuloor, 1970; Higuera and Medina, 2006). Maier (1927)
was the first to investigate this technique, and documented the decrease of the bubble size when the gas flow
was introduced through a cylindrical needle inside an outer laminar liquid co-flow. Later on, Chuang and
Goldschmidt (1970) confirmed Maier’s observations by performing systematic experiments, and Og̃uz and
Prosperetti (1993) carried out an exhaustive theoretical and potential flow numerical study of the formation
of bubbles using a co-flowing liquid, proposing a scaling law for the bubble size as a function of the co-flow
velocity. More recently, Sevilla et al. (2005) and Gordillo et al. (2007), performed a detailed experimental,
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theoretical and numerical study of a cylindrical co-flowing configuration in a high-Reynolds-number water
jet discharging in a stagnant air atmosphere, characterizing the bubble formation and providing suitable
scaling laws for the bubble size and the bubbling time. In a co-axial gas-liquid jet, the bubbling frequency,
fb, is nearly proportional to the liquid velocity, uw, and inversely proportional to the radius of the gas in-
jector, ro, giving fb ∝ uw/ro, with a dependence with the gas flow rate (Rodŕıguez-Rodŕıguez et al., 2015).
Thus, to produce small bubbles at high frequencies, it is necessary to use very small injectors and large
liquid velocities, what limits seriously the use of this simple configuration. To overcome such limitations, it
is necessary to force either the liquid or the gas streams to control the bubble generation frequency and the
bubble size.

In a recent study, Ruiz-Rus et al. (2020) have reported a new method to control both the size and the
frequency of the bubbles generated. Unlike in Ruiz-Rus et al. (2017), where the liquid stream was forced,
it consists of forcing the air stream by periodic modulations of the pressure at the upstream air feeding
chamber. These authors have showed that, whenever the pressure amplitude is higher than a critical value,
the forcing system is able to control the process, leading to the formation of nearly monodisperse bubbles
at the forcing frequency, established by the operating conditions. Thus, the bubble size can be decreased
by increasing the forcing frequency, ff , producing bubbles of volume Vb = Qc/ff , where Qc is the mean air
flow rate. Under effective conditions, two different breakup modes have been reported, referred to as mode
M1 and M2 respectively. On the one hand, mode M1 consist of an artificially accelerated natural bubbling
regime. Here, bubbles emanate from the tip of an intact ligament smaller than the wavelength of a small
interfacial perturbation induced by the oscillating air flow rate, λf = uw/ff . Under the M1 mode, both the
expansion and the collapse stages of the bubbling process take place faster than in the unforced case due
to the air flow modulation induced by the forcing system. On the other hand, bubble breakup under mode
M2 takes place from the tip of an air ligament longer than λf without having an expansion stage. Ruiz-Rus
et al. (2020) characterized the transition from one mode to the other, as well as the length of the intact
ligament and the bubble volume, reporting the possibility of reducing the bubble size up to 80% with respect
to the unforced cases. The present work will focus on the formation of bubbles under breakup mode M1,
analyzing the minimum value of the pressure perturbation that needs to be generated inside the forming
bubble to be able to control the forcing process. Consequently, the main goal is to report a quantitative
and general criterion for the bubble pressure amplitude, and thus extrapolate the results obtained with our
forcing mechanism to other facilities.

The manuscript is organized as follows. The experimental facility, methods and techniques are described
in Section 2, while the experimental measurements and results are presented in Section 3. A theoretical
model of the forcing process is presented in Section 4, to determine the time evolution of the pressure inside
the bubble, pb(t), the instantaneous gas flow rate, Qa(t), and bubble volume, V (t), knowing the mean air
flow rate, Qc, and the pressure in the feeding chamber, pc(t). In Section 5, characteristic scales for the bubble
pressure amplitude required to be able to control the bubbling process are provided. Finally, Section 6 is
devoted to the main conclusions of the work.

2. Experimental facility and techniques

This section is devoted to describe the experimental facility and techniques used to perform the experi-
mental measurements.

2.1. Description of the experimental facility

The experimental facility, shown in Fig. 1, is the same as that used in Ruiz-Rus et al. (2020), where a
detailed description can be found. It basically consists of a co-flowing system to generate bubbles inside a
water jet. The air is injected through a short needle of length L = 17 mm, and inner and outer radii ri = 0.4
and ro = 0.6 mm, respectively, placed co-axially inside a laminar water jet of radius rw = 4 mm, which
discharges into the ambient atmosphere. The needle tip is located at the center of the orifice, so that the air
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Figure 1: Sketch of the experimental facility including the water and air injection systems. The air stream is forced with a
loudspeaker controlled by a function generator and an amplifier.

is released at the centerline of the co-flowing water jet. The apparatus includes a forcing unit to stimulate
the air stream by periodically modulating the air injection pressure and, thus, to generate bubbles at the
selected forcing frequency, ff . To that aim, a constant air flow rate, Qc, is injected through a long capillary
tube into the air feeding chamber, placed just upstream of the injection needle, as sketched in Fig. 1. The
air chamber, which has a funnel shape to optimize the forcing effect, incorporates a loudspeaker activated
by a function generator (model FG110, YOKOGAWA) and a power amplifier (model PA-702, MONACOR).
Thus, both the amplitude and frequency of the voltage signal driving the loudspeaker can be precisely con-
trolled to generate the pressure fluctuation inside the chamber, pc(t), required to produce bubbles at a given
rate. Consequently, for a selected pair of values of the air flow rate, Qc, and water velocity, uw, bubbles can
be generated at a frequency larger than the natural bubbling one, fn, obtained when the bubbling process
is not forced (Sevilla et al., 2005; Gordillo et al., 2007).

As recently shown by Ruiz-Rus et al. (2020), there are two different bubble breakup modes depending
on the values of the control parameters, respectively denoted modes M1 and M2. In this work, we focus
on the breakup mode M1, where bubbles emerge from the tip of an air ligament of length, li, smaller than
uw/ff and, thus the values of the governing parameters were chosen accordingly. Specifically, the water jet
velocity was varied in the range 1.36 ≤ uw = Qw/Aw ≤ 1.86 m/s, where Aw = π(r2w − r2o) is the water exit
cross-section, and Qw is the water flow rate. The average air velocity at the needle exit, ua = Qc/(πr

2
o),

was modified in the range 1.36 ≤ ua ≤ 7.87 m/s. Finally, the forcing frequency was varied in the range of
250 ≤ ff ≤ 500 Hz. Consequently, both the liquid Reynolds numbers Re = ρuw(rw−ro)/µ ≫ 1, and the air
Reynolds numbers Rea = ρauaro/µa ≫ 1, so that viscous effects can be neglected in both streams. Here,
µ and µa represent the liquid viscosity and the air viscosity, respectively. Moreover, the Froude number
Fr = gli/u

2
w ≪ 1, indicating that the effect of gravity is negligible, where li denotes the length of the
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Figure 2: Experimental procedure followed to find the critical pressure amplitude in the chamber, ∆pcc, for a case where ua = 3.8
m/s and uw = 1.36 m/s, and a forcing frequency ff = 300 Hz. (a) Bubbling frequency, fb, versus the pressure amplitude in
the air feeding chamber, ∆pc. Hollow symbols and bars represent the mean values of fb and the associated standard deviations
for the forced cases, respectively. The black circle indicates the natural bubbling frequency in the unforced case, fn = 213 Hz.
The horizontal dashed line indicates the forcing frequency, ff = 300 Hz. The shaded area shows the region corresponding to
∆pc ≥ ∆pcc. The rest of the figures depict images of pinching bubbles at three consecutive cycles of the different cases shown in
plot (a). (b) Unforced case (fb = fn). (c) ∆pc = 500 Pa < ∆pcc. (d) ∆pcc = 812 Pa, which corresponds to the critical pressure
amplitude, leading to the formation of monodisperse bubbles at the forcing frequency. (e) ∆pc > ∆pcc.

intact ligament, defined as the distance between the needle exit and the position where the bubble pinches
off (see Fig. 3). Therefore, the relevant dimensionless control parameters are the forcing Strouhal number,
Stf = ffro/uw, the water-to-air velocity ratio, Λ = uw/ua, and the Weber number, We = ρu2

wro/σ.

2.2. Experimental methodology

In the present work, we are interested in determining the minimum or critical amplitude of the pressure
perturbation that needs to be induced in the air feeding chamber, ∆pcc, to generate bubbles at the the
forcing frequency, fb = ff . Thus, just to clarify, hereafter fb will denote the bubble formation frequency,
which will be equal to the forcing frequency, ff , if the bubbling process responds to the forcing system, and
fb = fn will refer to the bubbling frequency in the unforced natural cases. To characterize the pressure
fluctuations inside the feeding chamber, the temporal evolution of the air pressure, pc(t), was registered
by a pressure sensor placed at the bottom of the chamber (see Fig. 1). From this signal, the amplitude
of the pressure variation induced in the chamber, ∆pc, could be obtained (see Fig. 4). A data logger was
used to synchronize the pressure measurements with the images recorded by a high-speed camera (Photron
FASTCAM SA1.1), during the entire bubbling process. These images recorded the temporal evolution of
the growing bubble interface allowing us to determine the bubbling frequency fb (Ruiz-Rus et al., 2020).
Spatial resolutions between 23 and 40 µm/pixel were achieved using a Sigma 105 mm macro lens, acquiring
images with a frame rate that was varied between 37 500 f.p.s. with a resolution of 192 × 576 pixels, and
45 000 f.p.s. with a 192 × 480 pixel resolution, with a shutter speed of 8.5 µs. A special LED lamp with a
light diffuser was used to illuminate the forming bubbles with a backlighting technique.

The critical pressure amplitude, ∆pcc, was obtained following the procedure illustrated in Fig. 2. In
the case shown in the figure, the aim was to generate bubbles at 300 Hz with an air stream velocity of
ua = 3.8 m/s and a water jet velocity of uw = 1.36 m/s. Since for these flow conditions the natural bubbling
frequency is fn = 213 Hz, a bubble volume reduction of (1−fn/ff ) = 0.29 (29 %) would be achieved. First,
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a natural bubbling case was established by setting the values of ua and uw, or in dimensionless terms Λ
and We, where bubbles were produced at the corresponding natural frequency, fn (point b in Fig. 2a). The
natural case was then forced at a given frequency ff > fn, introducing a pressure perturbation of amplitude
∆pc with the loudspeaker. As mentioned above, for the case represented in Fig. 2, the natural bubbling
frequency was fn = 213 Hz (Fig. 2b), while the forcing frequency was set to ff = 300 Hz. For pressure
amplitudes lower than the critical one, ∆pc < ∆pcc, polydisperse bubbles were irregularly generated in a wide
range of frequencies, whose mean value was between the natural and the forcing frequencies, fn < f̄b < ff ,
as shown in the snapshots in Fig. 2(c), associated to point c in Fig. 2(a). The amplitude of the pressure
signal was then slowly increased until bubbles were generated periodically at the forcing frequency, fb = ff
(see Fig. 2d corresponding to point d in Fig. 2a). Thus, when ∆pc ≥ ∆pcc, the forcing system controls the
bubbling process, inducing a periodic bubbling regime at the forcing frequency, fb = ff > fn (Fig. 2d),
thereby generating smaller bubbles than in the unforced case. Figure 2(d) reveals that the shape of the
bubbles formed under effective forcing conditions are different from those produced in the natural case,
shown in Fig. 2(b). It is important to note that, for ∆pc ≥ ∆pcc, the bubbles pinch off closer to the needle as
∆pc increases (Fig. 2e), although their sizes do not vary since they are generated at the forcing frequency,
fb = ff .

From the preceding discussion it is clear that finding the dependence of ∆pcc with the control parameters
is important for the practical use of the forcing technique. Thus, for each natural case, the procedure de-
scribed above was followed for increasing values of ff , unveiling the dependence of ∆pcc with ua, uw and ff .
We will like to emphasize that all the experimental results corresponding to forced cases reported hereafter
have been stimulated at the critical pressure amplitude, ∆pc = ∆pcc.

Additionally, to experimentally characterize the bubbling process, the growing bubbles were detected
from the images taken with a high-speed camera, similar to those shown in Fig. 3. An in-house image
processing algorithm based in matlab® was used to detect the bubble contour at each frame (see Ruiz-
Rus et al., 2020, for further details). This allowed us to obtain the time evolution of the instantaneous
volume of the growing bubbles, V (t), assuming that they were axisymmetric, as V (t) =

∫ zt
0

πD2(z, t)/4 dz,
where D(z, t) is the diameter of the interface at a given axial coordinate, z, measured from the injector
exit, and zt is the axial position of the bubble tip. Once the bubble volume was determined, its equivalent
radius, R(t), was established as the radius of an equivalent spherical bubble, R(t) = [3V (t)/(4π)]1/3. In
addition, the temporal evolution of the instantaneous gas flow rate feeding the bubble was also calculated as
Qa(t) = dV/dt. To corroborate the accuracy of the bubble volume measurements, the final volumes of the

bubbles, experimentally obtained integrating Qa(t) during the bubbling time, Vb =
∫ 1/fb
0

Qa(t) dt, were com-
pared with the volume of air injected during their forming time, Vb = Qc/fb, obtaining very good agreements.

3. Experimental measurements

Figure 3 shows the time evolution of the bubble formation process of three different forced bubbling
cases where ∆pc = ∆pcc, We = 15.41, Stf = 0.132 and three air velocities, i.e. Λ = 0.256 in Fig. 3(a),
Λ = 0.358 in Fig. 3(b) and Λ = 0.773 in Fig. 3(c). It can be observed that, since in the three cases the
water velocity and the forcing frequency are the same, the bubble volume decreases as the air velocity is
reduced (Λ increases). It also reveals that the sequence of events taking place during one bubbling period
resembles the natural case described by Sevilla et al. (2005), which may be summarized as follows. Just
after the pinch-off of a bubble (frames labelled I in the first column of Fig. 3), a new cycle begins with an
expansion stage, where the air stem that remains attached to the needle, denoted intact ligament, inflates
radially due to the rapid increase of pressure inside the bubble (II), inducing an outward radial acceleration
in the surrounding liquid. As the bubble grows, the pressure inside the bubble decreases until eventually
drops below the pressure of the outer liquid, which is nearly the atmospheric one, pa (Sevilla et al., 2005;
Gordillo et al., 2007). At this point, the bubble interface decelerates and the radial expansion velocity of
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Figure 3: Experimental images showing the temporal evolution of the forced bubbling process corresponding to ff = 300 Hz,
uw = 1.36 m/s (Stf = 0.132, We = 15.41) at three air velocities, (a) ua = 5.32 m/s (Λ = 0.256), (b) ua = 3.80 m/s (Λ = 0.358)
and (c) ua = 1.76 m/s (Λ = 0.773). The time interval between the snapshots is 0.56 ms.

the bubble decreases. This pressure difference deforms locally the air-water interface near the injector (III)
and eventually becomes parallel to the needle (IV), establishing the onset of the collapse stage, where an
incipient neck appears. During the collapse phase, the neck moves downstream at the water velocity and
accelerates towards the symmetry axis until it finally closes (VII). The length of the intact ligament, li, is
smaller in the forced cases than in the corresponding unforced ones, and li decreases as ff increases. In
fact, the bubbling time is determined by 1/ff , and, for constant values of ua and uw, the collapse process
is faster for increasing forcing frequencies (Ruiz-Rus et al., 2020). Another interesting evidence extracted
from Fig. 3 is that the shape of the forming bubbles is nearly spherical for small values of Λ (Fig. 3a), while
it becomes more elongated and the bubble pinch-off takes place at larger distances from the needle, as Λ
increases (Fig. 3c) (Ruiz-Rus et al., 2020).

Figure 4 shows the temporal evolution of the air pressure in the chamber registered by the pressure
sensor, pc(t) (Figs. 4a, b and c), and the instantaneous gas flow rate, Qa(t) (Figs. 4d, e, and f), for the
cases reported in Fig. 3. The figure also indicates the instants corresponding to the pictures shown in Fig. 3
for clarity. In addition, the end of the expansion stage, estimated as the bubbling time minus the duration

6



(a) (b)

(d) (e)

(c)

(f)

I

III

IV

V

II
VII

VI

I

III

IV

V

II VII

VI I

III IV

V

II VII

VI

I

III IV

V

II

VII

VI

I

III

IV

V

II
VII

VI

I

III

IV
V

II VII

VI

Figure 4: Temporal evolution of the pressure inside the air feeding chamber, pc(t), (top row) and the instantaneous gas flow rate
obtained from the experimental images, Qa(t), (bottom row) for the conditions reported in Fig. 3 (We = 15.41, Stf = 0.132).
Only one out of three experimental points are plotted for clarity. Panels (a) and (d) correspond to Λ = 0.256 (Fig. 3a), panels
(b) and (e) to Λ = 0.358 (Fig. 3b), and panels (d) and (f) to Λ = 0.773 (Fig. 3c). The vertical dashed line in each panel denotes
the pinch-off instant while the dash-dotted line separates the expansion and the collapse stages. The figure also indicates the
instants corresponding to the images shown in Fig. 3 by the points I, II, III, IV, V, VI and VII in each plot.

(a) (b)

Figure 5: (a) Dependence of the mean pressure in the air feeding chamber with the air velocity for the unforced cases. The
thick solid line with crosses represents measurements of the chamber pressure when a steady air stream discharges into an
air environment as a free jet. (b) Dependence of p̄c with the bubbling frequency, fb. The hollow symbols correspond to the
unforced cases shown in (a) and the solid symbols to forced cases where fb = ff .
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Figure 6: Critical pressure amplitude in the air chamber, ∆pcc, as a function of the forcing frequency for different values of
the air velocity and (a) uw = 1.36 m/s (We = 15.41), (b) uw = 1.53 m/s (We = 19.50), (c) uw = 1.70 m/s (We = 24),
(d) uw = 1.86 m/s (We = 28.83). The symbols correspond to values averaged over a minimum of 20 bubbling events. The
associated standard deviations, plotted as error bars, are smaller than the symbol size in all cases and have not been displayed.

of the collapse stage, texp ≃ 1/ff − li/uw, is indicated by a dash-dotted line. Here, it has been taken into
account that, since the collapsing neck moves at the water velocity, the length of the intact ligament is given
by li ≃ uwtcol, where tcol is the collapse time (Sevilla et al., 2005; Ruiz-Rus et al., 2020). Figure 4 reveals
that pc(t) is a nearly-harmonic signal at the forcing frequency, reaching its maximum value at the beginning
and end of the bubbling cycle. This behaviour was observed for all the effectively forced bubbling regimes
in the breakup mode M1 considered herein, indicating that the bubble pinch-off is synchronized with the
maximum pressure in the air feeding chamber. Notice that, after the formation of a bubble, pc(t) starts to
decrease, reaching a minimum value around the end of the expansion stage, and then increases again until
the bubble pinches off.

The variation of the chamber pressure induces a modulation of the instantaneous gas flow rate feeding
the bubble, Qa(t). Generally, Figs. 4(d), (e) and (f) show that Qa(t) increases during the initial growth
of the bubble because its radial expansion demands an increasing flow rate to satisfy dV (t)/dt = Qa(t),

being larger than the average one, Qc = ff
∫ 1/ff
0

Qa(t) dt, during the expansion stage. After reaching its
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maximum value, Qa(t) starts to decrease, coinciding with the decrease of the feeding chamber pressure,
and becoming smaller than Qc. During the collapse stage, the pressure in the feeding chamber increases,
leading to an increase in Qa(t) and the closure of the neck. Note that, the relationship between pc(t) and
Qa(t), which involves the unsteady air flow through the injection needle, will establish the pressure inside
the forming bubble, which is different from that in the feeding chamber, and will be the topic of Sect. 4.
An inspection of the time evolutions of Qa(t) in Figs. 4(d), (e) and (f) reveals that they suddenly decrease
from the end of each cycle, a behavior not observed in the evolutions of pc(t) shown in Figs. 4(a), (b) and
(c). Indeed, when a bubble pinches off, there is a quick closure of the neck that generates a rapid increase
of pressure inside the intact ligament (Sevilla et al., 2005). Such pressure increment, which a priori can
be considered of the order of ρacua, where c is the speed of sound in air, stops the flow rate exiting the
injection needle and initiates the radial expansion of the bubbles. In fact, Figs. 4(d), (e) and (f), show that
the sudden decrease of Qa(t) from one cycle to the following one is more noticeable at lower values of Λ
or, similarly, at large values of ua, indicating that the pressure increase inside the bubble results larger at
lower values of Λ. This reasoning can be further corroborated in Fig. 4(f) where the value of Λ is sufficiently
large to have a slow closure of the neck and thus, generate a bubble overpressure lower than that produced
by a water hammer mechanism. The initial sudden increase of pressure that appears inside the bubbles at
low values of Λ causes the rapid radial expansion of the bubble interface observed in Fig. 3(a). This result,
together with the fact that the bubbles pinch off closer to the injection needle at low values of Λ (Ruiz-Rus
et al., 2020), make the bubble growth evolution more spherical than at higher ones.

The time evolutions of pc(t) shown in the top row of Fig. 4 indicate that, as in the case of Qa(t), their
mean values and amplitudes decrease as Λ increases, i.e. as ua is reduced. This result implies that both the
mean value and the minimum pressure amplitude required in the air feeding chamber to generate bubbles at
the forcing frequency, fb = ff , increase with the air flow rate. Similar results have been also observed in the
unforced cases shown in Fig. 5(a), where the mean pressure increases with the air velocity and barely de-
pends on the water velocity, reflecting the influence of the air pressure drop along the injection needle (Og̃uz
and Prosperetti, 1993; Gordillo et al., 2007). In fact, the mean pressure in the chamber is higher when
the air jet discharges in a water stream, generating bubbles, than when it discharges directly into an air
environment as a free jet. Such pressure increment is directly related to the pressure variations inside the
bubble due to its growth dynamics, as reported by Sevilla et al. (2005). Furthermore, for constant values
of the air velocity, the mean pressure in the chamber increases with the forcing frequency, as displayed in
Fig. 5(b). This pressure increase is caused by the effects of the accelerated bubble growth dynamics, as well
as by the pressure drop in the needle due to the pulsatile flow, which is greater as the amplitude of the
pressure perturbation increases (Yellin and Peskin, 1975).

Figure 6 shows the experimentally determined critical pressure amplitude, ∆pcc, versus the forcing fre-
quency for several values of the water and air velocities. It can be observed that, for given values of uw and
ua, ∆pcc increases with ff . The influence of ua is more intricate; in general, ∆pcc increases with ua, especially
at high forcing frequencies. However, it is almost independent of ua, or even decreases, at lower values of
ff (see for example in Fig. 6(d), where the critical amplitude is larger for ua= 3.23 m/s than for ua= 6.48
m/s). This non-monotonic effect of ua is due to the coupling of the forcing effect with the dynamics of the
growing bubble. Moreover, there is an effect of the injection needle on ∆pcc, that will be analyzed in Sect. 4.
Finally, note that ∆pcc is a decreasing function of uw for given values of ff and ua, as deduced by comparing
the data with the same value of ua in Figs. 6(a) and 6(d).

At this point, it is worth emphasizing that one of our main goals is to characterize the critical conditions
required to achieve an effectively forced bubbling regime, depending on the values of ua, uw and ff . However,
it is also important to determine the pressure fluctuations inside the forming bubble when the bubbles
are generated at the forcing frequency. In fact, the results shown in Fig. 6 are specific of our particular
experimental set-up, but a characterization of the critical amplitude of the pressure inside the bubble would
be independent of the forcing system as well as of the gas feeding line (Og̃uz and Prosperetti, 1993; Gordillo
et al., 2007; Rodŕıguez-Rodŕıguez et al., 2015). As a first step towards this goal, the time evolution of pb(t),
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Figure 7: (a) Sketch of bubbling process together with the physical and geometrical parameters. (b) Representation of the
injection system coupled with a spherical forming bubble.

whose direct measurement is not possible, must be related with that in the feeding chamber, pc(t). To this
end, a theoretical model is proposed in next section that allows obtaining the pressure inside the bubble.

4. Modeling of the forcing effect

In this section a minimal model aimed at obtaining the pressure inside the growing bubble, pb(t), from
the time evolution of the pressure in the feeding chamber, pc(t), together with the high-speed recordings, will
be described. Figure 7(a) shows a sketch of the injection region of the facility with the main physical and
geometrical parameters and Fig. 7(b) a representation of the air injection system. The unsteady air stream
flows from the feeding chamber, whose pressure, pc(t), varies with time due to the effect of the loudspeaker,
towards the forming bubble through a needle of length L. The pressure inside the bubble, pb(t), also varies
with time and so does the air flow rate, Qa(t). For simplicity, the bubble shape will be assumed spherical
with radius R(t). Since the expansion Reynolds number ρRṘ/µ ≫ 1, where the dot indicates the time
derivative, the spherical liquid flow around the growing bubble can be described by means of the inviscid
Rayleigh-Plesset equation (Og̃uz and Prosperetti, 1993; Gordillo et al., 2007; Rodŕıguez-Rodŕıguez et al.,
2015),

ρ

(
RR̈+

3

2
Ṙ2

)
+

2σ

R
= pb(t), (1)

where pb(t) represents the pressure inside the bubble relative to that in the surrounding water far away from
the bubble, which can be assumed to be atmospheric (Sevilla et al., 2005). The terms in the l.h.s. of Eq. (1)
stand for the liquid inertia and the surface tension, respectively.

In addition, the air pressure inside the bubble, pb(t), can be related to the air pressure at the feeding
chamber, pc(t), by an appropriate description of the oscillatory air flow through the needle. To that end,
we have used the one-dimensional model derived by Garćıa et al. (2014),

pb(t) = pc(t)− ρal
dui(t)

dt
− 1

2
ρaKui(t) |ui(t)| , (2)

where ui(t) = 4Qa(t)/(πr
2
i ) ̸= ua is the instantaneous air velocity inside the needle, l = l(t) is an effective

length and K = K(Rei, 2ri/L) stands for the dissipative loss coefficient, with Rei = Rearo/ri being the
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time-averaged air Reynolds number based on the inner diameter of the needle. The coefficient K represents
a lumped loss coefficient accounting for the flow separation and reattachment at the inlet, together with
the frictional viscous losses along the needle. However, in the present configuration, the length-to-diameter
ratio is not sufficiently large to have a fully-developed flow which, together with the oscillatory nature of
the flow, implies that K might also vary with time. Nevertheless, given the lack of published experimental
data considering time-varying pressure loss coefficients, cycle-averaged values will be adopted here. To that
aim, for the injection needle used in this study, with L/(2ri) = 21.25, an expression of K as a function of
Rei has been empirically obtained for the range of Reynolds numbers analyzed here, Rei < 1500, providing
K ≈ 8.25−50.46×10−4Rei. The values of K determined by this correlation are similar to those extrapolated
from the widely used expression given by Lichtarowicz et al. (1965) for ranges of L/(2ri) from 2 to 10 and
for Rei from 10 to 20000.

Furthermore, since the bubble growing from the needle tip is considered to be spherical, the instantaneous
air flow rate can be expressed in terms of the bubble radius R as

Qa =
d

dt

(
4

3
πR3

)
= 4πR2Ṙ . (3)

Therefore, the instantaneous air velocity can be expressed as

ui =
Qa

πr2i
=

4R2Ṙ

r2i
, (4)

and, consequently,
dui

dt
=

4

r2i

(
2RṘ2 +R2R̈

)
. (5)

As a result, by introducing Eqs. (4) and (5) into Eq. (2), the following expression for the air pressure inside
the bubble is obtained,

pb = pc −
4ρal

r2i
(2RṘ2 +R2R̈)− 8ρaR

4Ṙ|Ṙ|
r4i

K. (6)

Here, the inertial length l(t) includes the lost-end correction lo and an effective time-varying length which
represents the equivalent length of the slug of fluid ejected under non-irrotational conditions (Cummings,
1986). Its value is obtained by the Cummings’ empirical equation, properly adapted to a mean flow with
periodic oscillations (Luong et al., 2005), as

l(t) = lo +
3(lo + L)

3 + (L /2ro)1.585
, (7)

being the end correction lo ≈ πro/4 (Rayleigh, 1945; Howe, 1998) and L the slug effective length,

L (τ) =

∫ τ

0

ui(t)dt, (8)

where τ is the time measured from the beginning of each cycle until the end of the expansion stage.

Combining Eqs. (1) and (6) one gets,

ρ

(
RR̈+

3

2
Ṙ2

)
+

2σ

R
= pc −

4ρal

r2i
(2RṘ2 +R2R̈)− 8ρaR

4Ṙ|Ṙ|
r4i

K. (9)

To numerically determine the time evolution of the bubble radius, R(t), and its radial velocity, Ṙ(t), for a
given function of the pressure imposed in the feeding chamber, pc(t), Eq. (9) was solved using the matlab
ode solver (fourth order Runge-Kutta method), with the initial conditions R(0) and Ṙ(0) extracted from the
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Figure 8: Results obtained from the model computed for a bubbling cycle of the effective bubbling process established for the
flow conditions given by ua = 4.86 m/s, uw = 1.36 m/s (Λ = 0.280,We = 15.41); forced at ff = 350 Hz (Stf = 0.154). (a)
Temporal evolution of the pressure inside the bubble obtained by the model, pb(t), together with that of the measured in the
feeding chamber, pc(t). (b) Pressure difference pc(t)−pb(t) (dashed line, left axis) and instantaneous gas flow rate, Qa(t) (solid
line, right axis), both calculated from the model. In addition, the gas flow rate obtained experimentally (symbols, right axis) is
displayed for comparison. The horizontal line represents the averaged gas flow rate. (c) Comparison of the temporal evolution
of the bubble radius obtained from the model and experimentally. In this plot, only one out of two experimental points are
plotted for clarity. (d) Dimensionless bubble volume given by the model versus the experimentally obtained from the images
for all cases included in this work. The vertical dash-dotted line in plot (a), (b) and (c) represents the end of the expansion
stage.

experimental images. Afterwards, the pressure inside the bubble was obtained from Eq. (6). An example of
the results given by the model is displayed in Fig. 8, where a complete cycle of an effective bubbling process
for ua = 4.86 m/s, uw = 1.36 m/s (Λ = 0.280,We = 15.41) forced at ff = 350 Hz (Stf = 0.154) is shown.
The calculated evolution of the pressure inside the bubble, pb(t), which governs the bubble dynamics, is
presented in Fig. 8(a), together with the evolution of the pressure imposed in the feeding chamber, pc(t).
It can be observed that the overall evolution of pb(t) is similar to that of pc(t), with some particularities.
Firstly, it is clearly shown that, in this case, the bubble pressure, pb(t), is always lower than pc(t) although,
according to Eqs. (2) and (6), a reverse flow with pb > pc could take place at some point under different
conditions. Nevertheless, unlike pc(t), the resulting evolution of pb(t) is not sinusoidal due to the effects
of the dynamics of the growing bubble and the unsteady behaviour of the pressure drop along the needle.
Thus, pb(t) is initially high after the pinch-off of the previous bubble. Such high pressure makes the forming
bubble to expand radially very fast, decreasing its pressure, which eventually becomes negative and reaches
its minimum value around the end of the expansion phase, when the neck is formed. After this point, the
neck begins to collapse and the pressure inside the bubble increases due to the couple effects of the neck
closure and the rise of the pressure in the feeding chamber pc(t). The minimum value of pb(t) occurs earlier
than that in pc(t), because the initial radial acceleration of the liquid surrounding the bubble makes the
pressure inside the bubble decrease faster than that in the chamber to supply the gas flow rate required
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Figure 9: Temporal evolution of the pressure at the liquid interface during a forcing cycle for the experimental conditions
shown in Fig. 3 (uw = 1.36 m/s, ff = 300 Hz).

by the bubble growth, Qa(t) = dV (t)/dt, as observed in Fig. 8(b). The reduction of pressure inside the
bubble decelerates the outer liquid, reducing the decreasing rate of pb(t) and, thus the air flow rate since
pc(t), driven by the loudspeaker, continues decreasing. After reaching the minimum value, pb(t) starts to
increase to accommodate the gas flowing from the feeding chamber. However, the slow increasing rate of
the pressure together with the inertia of the liquid surrounding the neck region contribute to accelerate the
closure of the neck and, consequently the bubble pinch-off.

The difference between pc(t) and pb(t) and the resulting time evolution of the gas flow rate, Qa(t) are
plotted in Fig. 8(b). As expected, both curves follow the same trend but, more importantly, it should
be noticed the excellent agreement between the time evolution of Qa(t) provided by the model and that
obtained experimentally over nearly the entire bubbling period. Only during the final moments of the cycle
does the model fail due to the limitations inherent in its formulation. One of them is that the model does
not include the local closing process of the neck due to the spherical assumption of the bubble shape during
the entire bubbling process. An additional limitation is that the model is an incompressible one, and cannot
account for the rapid increase of pressure inside the bubble caused by compressible effects occurring when
the neck closure is very fast, especially at low values of Λ. Such limitations reduce the capability of the
model to accurately reproduce the increase of pressure which takes place just before the collapse of the neck
and the associated flow rate decrease, observed experimentally. Furthermore, Fig. 8(c) shows the evolution
of the computed value of R(t) (solid line), together with the equivalent bubble radius from the experimental
images (symbols), obtained as [3V (t)/(4π)]1/3. Notice that the bubble continuously grows during the whole
cycle, showing a faster inflation rate during the expansion stage, whose duration is indicated by a vertical
dash-dotted line in Figs. 8(a), (b) and (c). The general evolution of the air flow rate is well estimated,
validating the proposed model and indicating that it nearly reproduces the dynamics of the process during
the entire bubbling event. Figure 8(c) also includes three snapshots, denoted as I, II and III in panels (a),
(b) and (c) to help to associate the bubble shape with the pressure inside the bubble and the injected flow
rate. From instant I to II the pressure inside the bubble decreases rapidly and the bubble inflates. After
reaching the minimum value, a neck begins to form and propagate downstream as it closes, at the same time
that the bubble pressure increases (point III).
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(a) (b)

Figure 10: Dependence of ps with the air velocity for different values of the forcing frequency at (a) uw = 1.53 m/s (We = 19.5)
and (b) uw = 1.86 m/s (We = 28.83). The hollow symbols correspond to the unforced cases and the solid ones to forced cases.

In order to check the validity of the model for the entire range of the parameters explored in the work,
Fig. 8(d) shows the final bubble volume given by the model as the averaged air flow rate injected during the

forcing period, ⟨ui⟩πr2i /ff =
∫ 1/ff
0

Qa(t) dt, against the volume of the detached bubble obtained from the
experimental images as Vb = V (1/ff ) − V (0), both made dimensionless with (πr3o). The good agreement
between the results given by the model and the experimental ones corroborates the capability of the proposed
model. Thus, the measurements of pc(t) and the initial conditions, namely R(0) and Ṙ(0), will be used in
the following section to model the time evolution of the pressure inside the bubble pb(t) during the forced
bubbling cycle under the critical pressure amplitude ∆pcc.

5. Scaling of the effective pressure amplitude and of the initial radial velocity

The model described in Section 4 has been used to determine the time evolution of the pressure inside
the bubble, pb(t), knowing the pressure in the feeding chamber, pc(t). Thus, the mean value and the
characteristic pressure amplitude required to generate bubbles at the forcing frequency can be obtained. As
an example, the time evolution of the pressure at the liquid side of the interface, pb(t) − 2σ/R, is shown
in Fig. 9 for the three cases displayed in Fig. 3. The figure illustrates that the temporal evolutions of the
pressure are very similar, with the maximum value taking place at the beginning of the cycle. It also shows
that the amplitude increases with the air velocity and, since the forced bubbling cycle has the same duration
for the three cases, there is a faster decreasing rate of the pressure when ua increases, while the mean values
of the pressure, p̄b, are very similar. To characterize the pressure amplitude that needs to be established
inside the bubble to have a bubbling frequency equal to the forcing one, the root-mean-square of pb(t) will
be used,

ps =

√
ff

∫ 1/ff

0

[pb(t)− p̄b]
2
dt, (10)

where p̄b indicates the mean value of pb(t). Figure 10 shows the dependence of ps with the air velocity
and the forcing frequency for two different water velocities. It is clearly seen that, to generate bubbles
at the forcing frequency, the critical pressure amplitude increases substantially with the forcing frequency
and decreases with the water velocity. However, its dependence with the air velocity is not monotonic. In
particular, for all the forcing frequencies, ps barely changes at low air velocities, while it increases with ua

for larger values of the air velocity. The same behavior has been observed for the rest of the water velocities
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Figure 11: Dependence of the root-mean-square of the gas flow rate feeding the bubble, Qs, with the root-mean-square of the
pressure inside the bubble, ps, for all the experiments performed in this work. Different types of symbols indicate different
forcing frequencies as in Fig. 10.

tested. Note that, the bubbling process could also be controlled by perturbing the injected gas flow rate
instead of the pressure in the air feeding chamber. In this case, the flow rate amplitude would be a practical
control parameter to drive the bubbling process. Thus, we have represented in Fig. 11 the root-mean-square
of the gas flow rate feeding the bubble, Qs, obtained experimentally during a bubbling period, versus ps,
observing a linear dependence of Qs with ps. Consequently, in the following we will focus on determining
the critical pressure amplitude required to control the bubble generation process, i.e. ps(ff , uw, ua), having
in mind that the analysis is also valid to obtain Qs(ff , uw, ua) from Fig. 11.

The dependence of ps with ua can be explained in terms of the overpressure generated inside the form-
ing bubble by the dynamics of the neck closure. To analyse this effect, we will first focus on the natural
bubbling cases, where there is no additional effect of the forcing frequency. Figure 12(a) shows the time
evolution of both the pressure at the liquid interface and the instantaneous air flow rate minus the averaged
one, (Qa(t)−Qc), obtained experimentally during two bubbling cycles for uw = 1.36 m/s and two different
values of ua. To better compare the two cases, since the bubbling frequencies are different, the time has
been normalized with the formation frequency, fb. On the one hand, for large values of ua (black solid line
and down triangles), when a bubble pinches off, the neck closes very fast, driven by the Bernoulli suction
effect (Gordillo et al., 2005; Bergmann et al., 2009). Thus, the gas stream must suddenly stop, increasing
the pressure at the initial instants of the following cycle to values of the order of those occurring in a water
hammer phenomenon, pb(t = 0) ∼ ρa c ua, where c is the speed of sound in air (or the speed of the elastic
wave). This overpressure coincides with the rapid decrease of the air flow rate that takes place between the
end of a cycle and the beginning of the following one at times of the order of the acoustic one, as shown
in Fig. 12(a), and in agreement with Sevilla et al. (2005). As the new forming bubble expands, the volume
growth rate increases while the pressure rapidly decreases, reducing the outward radial velocity. Eventually,
the liquid interface pressure becomes negative, leading to a local inward radial motion of this interface,
which gives rise to the collapse stage (Gordillo et al., 2007). On the other hand, for smaller values of ua

(grey dashed line and circles), the air velocity is closer to that of the water, leading to a slower neck closure
with a lower air flow towards the forming bubble during the latest instants of the collapse process. In this
case, Fig. 12(a) shows a smooth evolution of the air flow rate from a cycle to the following one, without
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Figure 12: (a) Temporal evolution of the pressure at the liquid interface (lines, left axis) and the fluctuating flow rate, Qa(t)−Qc

(symbols, right axis), during two unforced bubbling cycles for uw = 1.36 m/s (We = 15.41) and two air velocities. The vertical
long-dashed line indicates the instant at which the bubble pinch-off takes place. (b) Dependence of the dimensionless instant
pressure inside the bubble at t=0, pb(t = 0)/(ρacua), with Λ, for the unforced cases at different Weber numbers. The shaded
region corresponds to the range of values of Λ for which the overpressure is generated by a rapid closure of the neck (water
hammer phenomenon).

observing a discontinuity at the pinch-off instant. Therefore, the initial overpressure that triggers the ex-
pansion of the new bubble is induced by a mechanism different from that associated to a water hammer.
Indeed, as suggested by Gordillo et al. (2005), during the latest instants of the bubble collapse, the air flow
rate through the neck is reduced, leading to gas accumulation in the ligament. This makes the pressure in
the ligament increase and, consequently, the air flow rate from the gas-feeding chamber decrease, as it is
shown in Fig. 12(a) just prior to the pinch-off time.

In order to determine the conditions under which the initial overpressure is driven by each mechanism,
Fig. 12(b) represents the value of the bubble initial overpressure obtained from the model pb(t = 0) for the
natural cases, divided by (ρa c ua), i.e. the pressure associated to an instantaneous closure, as a function of
Λ. It can be seen that there are two different regions depending on the value of Λ. In the first region, for
Λ < 0.36, highlighted by the shaded area in Fig. 12(b), the dimensionless overpressure remains constant with
Λ, and only depends on We. The overpressure in these cases is generated by the rapid closure of the neck,
being of the order of that caused by a water hammer. However, in the second region, pb(t = 0) barely changes
with the air velocity, as occurs with ps at low values of ua in Fig. 10 and, thus, the dimensionless overpressure
increases as ua decreases, or similarly, as Λ increases (see the unshaded area in Fig. 12b). This trend reveals
that, for Λ > 0.36, the pinch-off is driven by a slower closure of the neck, with an initial overpressure almost
independent of the air velocity. Since in the natural cases there is no artificially induced pressure variation,
the pressure values only reflect the influence of ua and of the collapse velocity. Therefore, the transitional
value of the water-to-air velocity ratio, at which the dominant mechanism changes, i.e. Λ ≈ 0.36, will remain
the same for the forced cases, as previously suggested by Figs. 4(d) and (f).

Taking into account the results displayed in Fig. 12(b), we will first focus on the pressure amplitude,
given by ps for Λ < 0.36. Thus, we have represented the mean value of the dimensionless pressure amplitude
⟨ ps/(ρacua) ⟩ versus the forcing Strouhal number in Fig. 13(a) for the four different water velocities, or Weber
numbers, used in this work. It has to be pointed out that for each value of Stf , ⟨ ⟩ denotes the averaged
value obtained for Λ < 0.36, for which the dimensionless pressure amplitude remains nearly constant, while
the error bars in Fig. 13(a) represent the standard deviation. It can be seen that the dimensionless pressure
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Figure 13: (a) Doubly logarithmic plot of the dimensionless pressure amplitude, averaged in the range Λ < 0.36, as a function
of the forced Strouhal number. Symbols correspond to the averaged values and error bars to their standard deviations. The
best data fit, given by the function St3f , is displayed with a solid line. (b) Amplitude of the pressure perturbation inside

the bubbles, ps, scaled by Eq. (11) with k1 = 50.43, for the four values of the water velocities (or Weber numbers) studied.
Different symbols indicate different forcing frequencies, as in Fig. 10.

amplitude increases with the Strouhal number as St3f . Thus, the overpressures generated inside the forming
bubbles are indeed caused by the rapid closure of the neck, with an additional contribution due to the law
that governs the closing of the neck which is taken into account by the Strouhal number. Consequently, the
pressure amplitude that needs to be established inside the bubble to control the bubbling process is given
by,

ps = k1 ρa c ua St
3
f . (11)

Figure 13(b) shows ps normalized as indicated by Eq. (11) for the entire range of values of Λ. Two different
regions can be distinguished; for Λ ≲ 0.36, all the points collapse on a constant value, while for Λ ≳ 0.36,
an additional dependence with Λ is observed. The collapse of all the data points on a constant value for
Λ < 0.36 indicates that Eq. (11), with k1 = 50.43, is a good estimation of ps in that range of water-to-air
velocity ratios. Thus, it is confirmed that a compressible mechanism, caused by the rapid closure of the
neck, drives the process for low enough values of Λ (or large air velocities). This is in agreement with the
temporal evolution of Qa(t) shown in Figs. 4(d) and (e), where it can be observed a sudden decrease of Qa

from the end of a cycle to the beginning of the following one occurring at times of the order of the acoustic
one. However, the dependence of ps/(ρacuaSt

3
f ) with Λ shown in Fig. 13(b) for Λ ≳ 0.36 indicates that

there is a different mechanism governing the pressure increase that needs to be generated inside the bubbles
to control the bubbling process.

In fact, the same conjecture can be raised from Fig. 10, where it is shown that ps does not longer depend
on ua at low values of the air velocity (large values of Λ). In these cases, a slow increment of pressure due
to gas accumulation upstream from the neck dominates over the weak neck closing effect. Consequently, a
new model has to be proposed to scale ps at large values of Λ. Thus, from now on we will consider only the
cases of Λ > 0.36. In these cases, where the air velocity is closer to that of the water, the closure of the neck
is slower than in the cases of small Λ. Then, the pressure gradients along the intact ligament, of length li,
during the collapse time, that generates the initial radial expansion of the bubble, can be estimated, using
incompressible theory, as ps/li ∼ ρ ro/t

2
col, giving

ps ∼ ρ u2
w

ro
li
, (12)
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Figure 14: (a) Dependence of ps/(ρu2
wro/li) with Stf , represented in logarithmic scale, for the four values of the water velocities

(or Weber numbers) studied and Λ > 0.36. Symbols correspond to the averaged value over the selected experiments, being
the error bars the standard deviation. The solid line represents the best data fit, having this function a nearly quadratic
dependence, ∝ St2f . (b) Amplitude of the pressure perturbation inside the bubbles, ps, scaled with the expression given by

Eq. (14) with k2 = 64.13, for all the experiments performed in this work. Different types of symbols indicate different forcing
frequencies as in Fig. 10.

where tcol ≃ li/uw is the collapse time of the neck (Ruiz-Rus et al., 2020). Since ps has been also observed to
depend on the forcing frequency (see Fig. 10), ⟨ ps/(ρu2

wro/li) ⟩ is displayed as a function of Stf for the cases
where Λ > 0.36 in Fig. 14(a). Here, ⟨ ⟩ now indicates the averaged values for Λ > 0.36, for each value of Stf ,
with the standard deviation depicted as error bars. The figure shows a good collapse of the experimental
data with a quadratic dependence with the Strouhal number, St2f . Consequently, it can be deduced that,

ps ∼ ρ u2
w St2f

ro
li
. (13)

Moreover, li/ro can be determined from Ruiz-Rus et al. (2020) as li/ro ∝ St−1
f Λ1/5We1/4. Substituting this

expression into Eq. (13), one gets

ps = k2 ρ u
2
w St3f Λ

−1/5 We−1/4. (14)

Figure 14(b) displays ps scaled with Eq. (14) as a function of Λ, revealing that all the experiments for
Λ ≳ 0.36 collapse on a nearly constant value, with k2 = 64.13. This result indicates that Eq. (14) provides a
proper scaling in this range of values of Λ. At the same time, it confirms that the proposed mechanism of a
slow neck closure generates the required bubble pressure amplitude when the air velocity is not sufficiently
high to produce a sudden increase of pressure, as occurs for Λ ≲ 0.36. Thus, since the tip of the intact
ligament moves downward at the water velocity, the air stream discharges in an environment whose volume
increases at a rate similar to the incoming flow rate. Consequently, the pressure inside the air ligament is
driven by the closing law of the neck, what barely depends on the air velocity, but it is connected with the
forcing frequency.

As described above, two different behaviors have been observed depending on the water-to-air velocity
ratio, Λ. On the one hand, at low values of Λ, when a bubble is about to pinch off, the neck closes very fast,
generating an increase of pressure that resembles that generated in a water hammer phenomenon. However,
the value of ps that needs to be established in the bubble is modulated by the forced Strouhal number, with
a power law given by St3f . This dependence is a consequence of the closing law of the neck, that can be
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Figure 15: (a) Effect of the bubbling frequency, fb, on the initial radial expansion velocity, Ṙ(0), for uw = 1.36 m/s. Hollow
and solid symbols indicate unforced and forced cases respectively. (b) Forced-to-unforced initial radial expansion velocity,
Ṙf (0)/Ṙn(0) with respect to the forced-to-unforced bubbling frequency, ff/fn. The solid line shows that Ṙf (0)/Ṙn(0) =

(ff/fn)
3/2.

written as rn ∝ (tc − t)n, where rn(t) is the radius of the neck, tc the closing time and n an exponent that
depends on Stf . In fact, an instantaneous neck closure would induce a pressure increase of the order of
ps ∼ ρa c ua, where c is the sound speed or the speed of propagation of the pressure waves traveling along
the air ligament. A detailed study of the closing process of the neck and its dependence with Λ, We and,
more importantly, with Stf could provide the proper increase of pressure generated in the forming bubble
after the pinch-off of the previous one. Nevertheless, such study is out of the scope of the present work,
and the effect of the forcing frequency was included in Eq. (11) through the Strouhal number. It has to be
pointed out that, in Eq. (11), the constant k1 = 50.43 is apparently too high simply because the forcing
frequency has been used in Stf instead the inverse of the closing time, since Stf ≪ ro/(uwtc). On the other
hand, at higher Λ values, the air velocity is closer to that of water, and the air ligament elongates at a
speed that allows the gas flow to be accommodated. In theses cases, the neck closure is much slower than
at lower values of Λ, and the compressible mechanism caused by a water hammer phenomenon no longer
takes place. Instead, the mechanism generating the pressure increase that is required in the forming bubble
to control the bubbling process is mainly an incompressible one. Specifically, part of the incoming flow fills
the bubble that is about to pinch off and the rest remains in the air ligament, being the germ of the next
bubble. When the neck closes, the incoming air flow makes the pressure increase to inflate the ligament at a
rate such that its variation of volume is equal to Qa(t). Although the value of Λ that defines the separation
of both regimes might depend on the Weber number, in the range of values of We explored in this work, it
has been found to be Λ ≈ 0.36. In fact, matching Eqs. (11) and (14), a weak dependence of the transitional
value of Λ can be found with We, as We−5/16,

Λt =

(
k1
k2

)5/4 (
ρa
ρ

)5/4 (
ρ c2ro
σ

)5/8

We−5/16, (15)

whose mean value is Λt = 0.35.

To conclude this Section, we will describe the mechanisms leading to the initial expansion of the bubble
with the aim at providing a proper expression for the initial radial bubble velocity required, as initial
condition, to implement the model described in Section 4. A close inspection of Figs. 3 and 9 indicates
that the maximum value of the pressure inside the bubbles always occurs at the beginning of the bubbling
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Figure 16: (a) Dependence of the initial radial expansion velocity of the unforced cases, Ṙn(0) divided by ρac/ρ with Λ. The
figure shows a collapse of all the experimental point, indicating that Ṙn(0)ρ/(ρa c) ∝ Λ−1 (b) Experimental validation of
Eq. (18) with k∗ = 3.637.

process, inducing a rapid radial acceleration of the outer liquid. In fact, as mentioned above, at low values
of Λ = uw/ua, where the air velocity is larger than that of the water, when a bubble pinches off, the neck
closes very fast. Thus, the gas stream must suddenly stop, increasing the pressure at t = 0 to values of the
order of those occurring in a water hammer phenomenon. This overpressure causes the expansion of the
intact ligament with an initial velocity that we will denote Ṙ(0). The experimental values of Ṙ(0) have been
represented in Fig. 15(a) for uw=1.36 m/s. It can be seen that, in the unforced cases displayed by hollow
symbols, Ṙn(0) increases with the bubbling frequency, fb. However, when the bubbling process is controlled
by the forcing system, Ṙf (0) increases with the forcing frequency, even for equal values of ua, being always
larger than the corresponding natural case since ff > fn. Moreover, comparing the initial radial expansion

velocities obtained in the forced cases, Ṙf (0) with those in the unforced ones, Ṙn(0), it was found that

Ṙf (0)

Ṙn(0)
∝

(
ff
fn

)3/2

, (16)

as displayed in Fig. 15(b).

Interestingly, this figure shows that all the experimental measurements, performed varying uw, ua and
ff , collapse onto the same curve, described by Eq. (16). Since, at large values of ua (low values of Λ),

the liquid accelerates radially during times of the order of the acoustic time, Ṙn(0) can be estimated as
Ṙn(0) ∼ (ρa/ρ) c uatc/ro, where tc ∼ L/c ∼ 30 ro/30ua ∼ ro/ua, giving Ṙn(0) ∼ (ρa/ρ) c. To corroborate
this hypothesis, Fig. 16(a) shows the initial radial expansion velocity of the bubbles versus the water-to-air
velocity ratio indicating that,

ρṘn(0)

ρa c
∝ Λ−1, (17)

what indeed indicates that ρa c ua ∼ ρ uw Ṙn(0). Substituting Eq. (17) into Eq. (16), one gets

Ṙf (0)

ua
= k∗

(
ρa c

ρ uw

)
St

3/2
f Λ1/2 We1/2, (18)

where Stf = ffro/uw and Stn = fnro/uw are the Strouhal numbers based on the bubbling frequency, which
is ff in the forced cases, and fn in the natural unforced ones and, according to Ruiz-Rus et al. (2020),
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Stn ∝ (ΛWe)−1/3. Expression (18) has been verified experimentally in Fig. 16(b), showing an excellent
agreement with k∗ = 3.637. Thus, the initial radial expansion velocity, to be used in the model descibed in
Section 4, is given by,

Ṙf (0) = k∗
(
ρa
ρ

)
c St

3/2
f Λ−1/2 We1/2. (19)

6. Conclusions

In this work, we have determined the gas pressure and flow rate amplitudes which are required to gener-
ate inside the bubbles to produce them at a given frequency in a co-flowing gas-liquid jet. To that aim, we
performed experiments, where a harmonic pressure perturbation with a forcing frequency, ff , was applied
in the air feeding chamber with a loudspeaker. The air pressure inside the chamber where the perturbations
were induced, pc(t), was registered with a pressure sensor synchronized with a high-speed camera, used to
record the time evolution of the bubble interface. Thus, the instantaneous gas flow rate, Qa(t), driven by the
pressure modulation, was experimentally measured from image processing. It has been shown that, when
the pressure amplitude inside the bubble is high enough, the bubbling process is controlled by the forcing
system, generating monodisperse bubbles at the forcing frequency. Since the forcing frequency is larger
than the natural one, ff > fn, smaller bubbles are produced. Consequently, for each natural case, defined
by the values of (ua, uw), and a given ff , we slowly increased the pressure amplitude until bubbles were
periodically generated at the forcing frequency, finding the minimum effective or critical pressure amplitude,
∆pcc, required for the forcing mechanism to control the process.

However, since in this case ∆pcc(uw, ua, ff ) represents the critical pressure amplitude in the air feeding
chamber required in our facility, a model to calculate the pressure inside the forming bubble, pb(t), has also
been developed. Hence, a general criterion, applicable to a different facility, has been established. In par-
ticular, the growing bubble has been modeled by the inviscid spherical Rayleigh-Plesset equation, together
with the oscillatory and incompressible gas flow along the injecting needle, obtaining a very good agreement
between the values of Qa(t) given by the model and the experimental results. Once the time evolution of the
pressure inside the forming bubble was determined, the amplitude required to control the bubbling process
has been characterized by the root-mean-square of pb(t), denoted ps.

Interestingly, depending on the water-to-air velocity ratio, Λ, two different mechanisms leading to the
increase of pressure inside the forming bubble, required to control the process, have been observed. For
Λ < 0.36, during the latest instants of the bubble formation process, the neck collapses rapidly, generating
an increase of pressure similar to what happens in a water hammer phenomenon. However, the value of
ps that needs to be established in the bubble also depends on the forced Strouhal number, with a power
law given by St3f . For Λ > 0.36, the neck closure is much slower than at lower values of Λ, and the initial
increase of pressure, required to control the bubbling process, is caused by an incompressible mechanism.
Indeed, a portion of the gas injected feeds the forming bubble, while the rest remains in the air ligament
of the following bubble. When the neck closes, the incoming airflow makes the pressure inside the intact
ligament increase, causing the ligament to inflate at the rate necessary to accommodate the airflow, Qa(t).
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