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Abstract: Clustering algorithms are necessary in Wireless Sensor Networks to reduce the energy
consumption of the overall nodes. The decision of which nodes are the cluster heads (CHs) greatly
affects the network performance. The centralized clustering algorithms rely on a sink or Base Station
(BS) to select the CHs. To do so, the BS requires extensive data from the nodes, which sometimes need
complex hardware inside each node or a significant number of control messages. Alternatively, the
nodes in distributed clustering algorithms decide about which the CHs are by exchanging information
among themselves. Both centralized and distributed clustering algorithms usually alternate the nodes
playing the role of the CHs to dynamically balance the energy consumption among all the nodes
in the network. This paper presents a distributed approach to form the clusters dynamically, but it
is occasionally supported by the Base Station. In particular, the Base Station sends three messages
during the network lifetime to reconfigure the skip value of the network. The skip, which stands out
as the number of rounds in which the same CHs are kept, is adapted to the network status in this way.
At the beginning of each group of rounds, the nodes decide about their convenience to become a CH
according to a fuzzy-logic system. As a novelty, the fuzzy controller is as a Tagaki–Sugeno–Kang
model and not a Mandami-one as other previous proposals. The clustering algorithm has been
tested in a wide set of scenarios, and it has been compared with other representative centralized
and distributed fuzzy-logic based algorithms. The simulation results demonstrate that the proposed
clustering method is able to extend the network operability.

Keywords: wireless sensor networks; clustering; interval Type-2 fuzzy system

1. Introduction

Wireless Sensor Networks (WSN) are a type of network composed of many small, isolated sensors
that are distributed in a predetermined area and they communicate with each other via wireless
links. A sensor, also called node or mote, is a low-cost, processing device with limited features in
terms of computing capacity and energy resources because it is usually powered only with batteries
or discontinuous energy sources like solar panels. Advances in the microelectronics and wireless
communications make WSN applications very numerous and they are growing continuously [1].
There are WSN applications in many areas such as military, medical, environmental, agricultural,
industrial, or smart cities’ environments among others. Some examples of current topics dealing with
WSN are in health care [2] or smart grids [3].

The main purpose of those sensors is to monitor some physical variables in their environment and
to send their values to a network component that collects all the information to be further processed.
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This last device is called the sink, gateway, or Base Station (BS). The BS is usually connected to the
power grid and it usually has greater computing power, so it does not have the scarce resources of the
sensors. Precisely, the power resources in the sensors constitute a limiting characteristic of the WSN as
it can prevent the network from operating correctly, that is, gathering all the required information and
transmitting it to the BS. Therefore, one of the main challenges of the WSN is to increase the lifetime of
the network to avoid nodes depleting their batteries when accomplishing unnecessary tasks. In this
sense, one of the most useful techniques is clustering, whereas traditional routing appears better suited
for larger networks. A typical example of clustering is found in Figure 1. Among all the nodes, some
of them are chosen to become Cluster Heads (CH). The CHs act as gatherers of data of the associated
nodes, also referred to as contributing nodes. The nodes transmit their measurements to only one CH,
which usually is the one that is closest to them. Then, each CH aggregates the information from its
group and relays it to the BS. This technique avoids that all the nodes would have to communicate
with the BS directly, which could not be affordable at long distances because they would deplete
their battery much faster due to the nonlinear dependence of the power losses with the distance.
Additionally, the configuration of the CHs should not be fixed and the nodes should take turns to
undertake this function in order to balance the energy consumption of being a CH [4]. Thus, the
hierarchy of CHs dynamically changes within the network.

Cluster head

Normal node

Base station

Influence area for 

a CH

Data message

Aggregated 

message

Figure 1. Illustration of a clustering procedure in a wireless sensor network.

Clustering can be performed in different ways. For those in which CH sends the information
directly to the BS (without relaying nodes), the clustering techniques are classified according to the
activity performed by the BS. In this set, we distinguish the following clustering strategies:

• Centralized Clustering. The BS has full control about how the clustering is performed. The BS
always decides which nodes are converted into CHs. For this operation, the BS needs information
about all the nodes in order to choose the most appropriate ones as CHs. The most common
properties used for this decision are the location of the node within the sensing area and the
residual energy of each node. The first one is not always available in all the applications because
nodes usually cannot afford GPS equipment or similar hardware.

• Distributed Clustering. The nodes are completely autonomous and decide by themselves if they
become CH or not. This decision is supported by the properties that the node can know/estimate
by itself. Then, that information is weighted by some methods that indicate whether to become
CH or not. Finally, those nodes that selected themselves as CH send a message to the network so
that the other nodes can join them to their clusters.

Centralized and distributed clustering can also be subdivided into different categories depending
on the method used to choose the CHs. There are stochastic approaches, geometric algorithms, methods
based on fuzzy logic (Type-1 or Type-2), or techniques supported by other artificial intelligence.
The most relevant stochastic and distributed algorithms is Low-Energy Adaptive Clustering Hierarchy
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(LEACH) [5]. LEACH employs a random number that is generated by each node. This number
is compared with a parameter representing the probability of becoming CH. The generated value
increases with the number of rounds if the sensor has not been chosen as a CH, and it is determined
by a system configuration parameter (p). If the random number is greater than this value, then the
node becomes a CH. An adaptation of this method is detailed in [6], where the nodes add different
thresholds depending on the distance or the remaining energy. Other stochastic method is the Hybrid,
Energy-Efficient, Distributed clustering approach for ad hoc sensor networks (HEED) [7], a multi-hop
clustering algorithm in which the probability of being a CH depends on the residual energy. Normal
nodes use the inter-cluster communication cost as a metric to decide which cluster it should join. In
an Energy Efficient Clustering Scheme (EECS) [8], the authors propose a clustering method based
on a competition among a fixed number of CH candidates. The CH candidates are selected with a
probability T. This probability is set empirically in a similar way to parameter p in LEACH. Other types
of approaches are those that combine stochastic and geometrical methods like Voronoi Tessellation.
The work in [9] follows this approach for a mobile WSN in which the CH corresponds to the seeds of
the cells.

Clustering can also be supported by artificial intelligence. Particularly, Fuzzy Rule-Based Systems
(FRBS) outstand as a convenient mechanism to decide which nodes will play the role of the CHs.
The applications and research scopes that use these types of expert systems are very numerous in
areas such as image classification [10], performance improvement in wind turbines [11], image fusion
field [12], software error identification [13], or wireless sensor networks [14]. As for clustering, the
work in [15] describes a particle optimization algorithm based on LEACH. The authors of [16] use a
fuzzy logic Type-1 distributed algorithm with two outputs. The first output defines the sending radius
of the announcement message and the second one determines whether a node will be CH or not.

One of the first relevant centralized methods that employs an expert system is the Cluster-head
Election using fuzzy logic (CHEF) [17]. The BS implements a fuzzy logic Type-1 algorithm to decide
which node will be cluster head in each round. In [18], the BS selects the best nodes based on a fuzzy
Type-2 system. The inputs of this system are the residual energy, the distance to the BS, and the number
of neighbors of each node. In the proposal presented in [19], the BS receives information about the
energy and the location of the nodes. Then, the BS decides through a simulated annealing algorithm
which node configures itself as a CH. Previously, BS has removed as candidates CHs those nodes with
an energy below the total average. The work in [20] describes another centralized method that employs
a very complex technique. Specifically, it uses a convolutional neural network to determine the best
CH. The authors in [21] present a centralized algorithm in which the BS uses artificial-intelligence as
fuzzy c-means to determine the best location for the center of each cluster. The authors of [22] show a
centralized algorithm that uses a Particle-Swarm based Optimization (PSO) for choosing the best CHs.
Additionally, the BS determines the time that a CH remains active based on the residual energy of the
system. Although the idea is very promising, the previous implementation is complex in real-time
applications because its solution can be only achieved after the convergence of an iterative process.

In this paper, we opt for a hybrid approach which could integrate the benefits of both centralized
and distributed clustering algorithms. We propose a mainly distributed algorithm that is guided by
the BS at specific instants. In our proposal, the BS sends setup information only three times during the
whole lifetime of the network. Thus, those messages change only one characteristic of the distributed
algorithm at the following instants: (i) at the beginning of the communication, (ii) when the first
node depletes its battery, and (iii) when the network only keeps 50% of alive nodes. This occasional
intervention of the BS is easy to implement and results in a better performance. In particular, the
messages of the BS are used to dynamically tune the skip value. The operation of a WSN can be
divided into rounds. In a traditional approach, at the beginning of each round, the CHs are selected
and then the nodes send their data to their corresponding CHs, which will aggregate and forward in
a new message to the BS. However, it is possible to maintain the same structure of CHs for several
rounds (referred to as the skip value) so that the CH configuration messages are only sent at the first
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round of this group of skip rounds. This would lead to a reduction of the energy consumption of the
CHs. In previous works, the skip value was a constant value [23], but, in this paper, we propose to
dynamically adjust it as the inertia of the network varies during its lifetime.

The approach presented in this paper has three main novelties when compared with
previous works:

• It is a distributed clustering algorithm guided by the BS in a simple way, with just three
transmissions during the network lifetime. The transmissions help the nodes know about the
status of the network.

• It uses a dynamic skip value to keep the same CH structure in the network during a skip number
of rounds. In this way, the configuration of the skip value is adapted to the dynamic inertia of
the network during its operative time. As a consequence, the network can reduce the energy
consumption for the CH configuration more efficiently.

• The present paper constitutes a novelty concerning the type of fuzzy system used in the nodes.
The nodes implement a new Type-2 Tagaki–Sugeno–Kang (TSK) model for the fuzzy system [24].
Previous fuzzy-logic based clustering algorithms rely on a Mandami model. However, the TSK
has revealed itself more appropriate in real-time applications. Moreover, the input variables
in the fuzzy system are carefully selected to extend the network lifetime as it is described in
Section 2.1.1.

Consequently, this clustering algorithm does not need complex or expensive hardware in
the nodes because it is a distributed one. Moreover, it achieves good results without any
optimization process in the BS, which could be a demanding process in terms of resources and
time. This consumption could not be always negligible, even for the BS. The algorithm has been
evaluated in a wide set of scenarios. The results demonstrate that the sporadic intervention of the
BS leads to an extension of the network lifetime so that it can operate longer without the battery
replacement of the sensing nodes.

The rest of the paper is organized as follows. First, Section 2 presents the main guidelines of the
proposed algorithm which encloses the underlying Interval Type-2 Fuzzy System and the Cluster
Head election algorithm. Next, Section 3 shows the experiment setup and the results obtained for
the comparison with other clustering methods. Finally, the conclusions and future work appear in
Section 4

2. Proposed Algorithm

In this section, we present the main guidelines of the proposed clustering algorithm. Once the
nodes and the BS are deployed, the BS sends the startup message to all the nodes. Nodes use this
message to calculate the distance to the BS based on the Received Signal Strength Indicator (RSSI).
The network is scheduled to work in a round basis. For each round, nodes run the Interval Type-2
Fuzzy System to evaluate whether they promote themselves as CH or not. Then, those nodes that
select themselves as CH send the advice message to the whole network. Non-CH nodes send their
data message to the closest CH, which aggregates all the data and relay it to the BS.

In the next sections, first, we explain the underlying Type-2 Fuzzy System that rules the CH
selection. Then, we detail the CH selection algorithm that schedules how the network behaves in order
to accomplish its application. This description shows the distributed nature of the algorithm, which is
occasionally guided by the BS.

2.1. Interval Type-2 Fuzzy System

Fuzzy systems are used in numerous proposals about clustering for sensor networks as it behaves
properly with the inherent characteristics of these types of networks. This convenience is mainly due to
the ability of the fuzzy systems to work on systems with ambiguous, vague, or incomplete inputs [25].
For example, many measurements of a sensor network can be considered incomplete or imprecise.
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In other situations, the nodes cannot afford to achieve an effective and complete knowledge about
their surroundings (other nodes in the network or the environment) because it usually involves the
exchange of too many messages. This will saturate the wireless channel and accelerate the depletion of
their batteries. In addition, when a node analyzes its own data, non-precise information can be found
due to the tolerance of the probes. This happens when evaluating the remaining energy or the distance
to the BS that the node computes with the RSSI of different signals.

In our proposal, we use an Interval Type-2 Fuzzy System (IT2FS) because these types of systems
work better than Type-1 ones when the measurements are specially inaccurate or vague [26]. One
of the features that makes them suitable to cope with the uncertainty of WSNs is that Type-2 fuzzy
systems can incorporate that uncertainty into their fuzzy sets as can be seen in Section 2.1.1. The block
diagram of an interval Type-2 fuzzy system, as the one employed in our approach, is presented in
Figure 2.

Figure 2. Diagram of a Type-2 Fuzzy System.

The operation mode of the structure shown in Figure 2 is as follows:

1. The crisp values of the inputs are fuzzified with interval Type-2 fuzzy sets that are stored in the
Knowledge Base (KB).

2. Fuzzified inputs are bound together through the rules found in the KB.
3. The inference process binds the inputs, the rules, and the outputs.
4. The interval Type-2 fuzzy is reduced to a Type-1 set by the type-reducer block.
5. The last step is to obtain the output. In our case, the highest and lowest values of the interval are

used, each one in a different stage of the process.

Following a distributed clustering approach, each node runs its IT2FS independently and it
obtains the output based on its own measurements. To allow an effective deployment and reduce
the computational cost of the nodes, the complete solution space of the IT2FS is sampled. Thus, the
node only has to quantify the inputs and it gets the right output from a table stored in its memory.
This method is much faster than the execution of the inference engine, and we have checked that the
error that it introduces is negligible.

Once the main process is described, the system has to be adapted to a specific application
(clustering in this case). Therefore, we present the design of the input variables and the layout of the
fuzzy sets in the next section.

2.1.1. Variables of the Type-2 Fuzzy System

For this approach, we have employed four input variables and one output variable for the interval
fuzzy system. The inputs have been designed taking into account two fundamental aspects related to
the lifetime of the network. First, two inputs are related to the energy of the nodes. As a consequence,
as much energy a node has, it is more likely to be considered as a cluster head. Second, the other two
inputs are based on the performance of a node when it acts as a cluster head. The four inputs used are
described as follows:
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• Er. Remaining energy. This variable measures the percentage of energy that a node has with
respect to its initial one. Thus, it ranges from 1 (full battery) to 0 (empty battery). If this value is
low, the probability of the node of being chosen as CH should be smaller.

• NCHr. This input evaluates the number of times a node has become a CH compared with the total
of advice messages of surrounding CHs that it has previously received. NCHr follows Equation (1).
If the node has not been selected as a CH for a long time, this value will be high hence. As a
consequence of this, the probability of becoming CH will increase:

NCHr = 1 − NCH
Ntotal

. (1)

where NCH is the number of times that the node has been selected as CH and Ntotal is the total
number of advice messages received from other CH since the network started to operate.

• ErCH . It is the energy that the node has when compared with the average energy of all the nodes
that were selected as CHs in the previous round. Consequently, each time a node becomes a CH,
it includes its remaining energy in the advice message and then each node computes the average
of all the values received from the CHs in the previous iteration to obtain this value. The value is
normalized according to Equation (2):

ErCH =

{
1 i f E ≥ 1.5 mean(ECH)

E
1.5 mean(ECH)

i f E < 1.5 mean(ECH)
(2)

where E is the energy of the node and mean(ECH) is the average of the energy values received in
the advice messages in the preceding iteration. This message is sent to the entire sensing area, so
it reaches all nodes. The election of the value 1.5 for the normalization parameter of the threshold
in the equation is due to the need for limiting the range of the variability of ECH . We have
empirically determined that setting ECH to a value greater than 1.5mean(ECH does not affect the
results significantly. We also observed that the proposed setting also reduces the fluctuation of
the system. Alternatively, a node that has been chosen as a CH in a previous round is very likely
to have lower energy than those nodes which have only been sensors. In this case, this value will
be small, and it would not be chosen again as CH.

• RnoCHr. It is a function of the number of rounds past since a node became CH. It is calculated as
indicated in Equation (3):

RnoCHr =

{
1 i f R ≥ Nnodes

R
Nnodes

i f R < Nnodes)
(3)

where R is the number of rounds since a node has not been CH and Nnodes is the total number of
sensors in the network. If a node has not acted as CH for a long time, this variable will have a
high value, which will try to increase the output of the IT2FS. This input prevents a node from
remaining as a contributing sensor for a long time.

Those four inputs are fuzzified into three interval Type-2 sets as shown in Figure 3. The three
fuzzy sets are: (i) “low” (L), (ii) “medium” (M), and (iii) “high” (H). Each input value is fuzzified with
those sets whose design overlaps between them.
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Figure 3. Input Type-2 Fuzzy Set.

The inference engine uses the rules stored in the knowledge base (see Section 2.1.2) to obtain the
output membership function that is based on the fuzzified values of the input variables commented
above. In contrast to our previous fuzzy-based clustering algorithms, we propose that the inference
process follows a Tagaki–Sugeno–Kang (TSK) model [24]. Consequently, the output variables, as in
other TSK systems, are functions whose parameters are the input variables. Those functions are usually
linear combinations or constants. The reason for using TSK instead of Mamdani [27] is because, in TSK
systems, the consequent of each rule can have as many parameters per rule as input values. This
assures more degrees of freedom in the design than a Mamdani one and it provides more flexibility
in the design of the system [28]. Another important feature of TSK systems over Mamdani ones is
that they can approximate any Mamdani system with an arbitrary level of precision [29]. Moreover,
because TSK rule’s consequent is formed by a combination of parameters, TSK systems are more
suitable than Mamdani systems in applications that use adaptive or optimization techniques, since it is
more efficient [30]. The output intervals in our proposal, noted as (ol , oh), are formed by five output
sets configured as constants as it is detailed in Table 1:

Table 1. Values for the output interval fuzzy set.

Name Lower Interval Limit ol Upper Interval Limit oh

Very Low 0 0.3
Low 0.2 0.4

Medium 0.3 0.6
High 0.6 0.8

Very High 0.75 1

2.1.2. Knowledge Base of the Type-2 Fuzzy System

The knowledge base is composed of a set of IF-THEN clauses that bind all the inputs and
the output to encompass the expert knowledge about the application. An example of a rule is as follows:

IF Er is Low AND NCHr is Low AND ErCH is Low AND RnoCHr is Low THEN output is
Very Low.

This example rule encloses a basic expected behavior: if a node has a low battery level, its relative
energy is low, and it has been selected as a CH several times recently, its probability of being chosen
as CH should be very low to avoid becoming again a CH and to allow a better energy balance in
the network.
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Additionally, taking into account that the system is a TSK, we can freely adjust the output variable
to suit the requirements of the systems (see Table 1), whereas, with a Mamdani system, the output
values are not predictable or adjustable beforehand.

For our implementation, the knowledge base is composed of 81 rules that are displayed in Table 2.

Table 2. Rule base for the Type-2 fuzzy controller.

Rule Ri NCHri ErCHi RnoCHi Score Rule Ri NCHri ErCHi RnoCHi Score

1 L L L L VL 42 M M M H H
2 L L L M VL 43 M M H L M
3 L L L H L 44 M M H M H
4 L L M L L 45 M M H H H
5 L L M M L 46 M H L L L
6 L L M H VL 47 M H L M L
7 L L H L VL 48 M H L H L
8 L L H M L 49 M H M L VL
9 L L H H L 50 M H M M L

10 L M L L VL 51 M H M H M
11 L M L M VL 52 M H H L M
12 L M L H L 53 M H H M H
13 L M M L VL 54 M H H H VH
14 L M M M L 55 H L L L VL
15 L M M H L 56 H L L M VL
16 L M H L VL 57 H L L H L
17 L M H M L 58 H L M L VL
18 L M H H L 59 H L M M VL
19 L H L L VL 60 H L M H L
20 L H L M VL 61 H L H L VL
21 L H L H L 62 H L H M VL
22 L H M L L 63 H L H H L
23 L H M M L 64 H M L L L
24 L H M H VL 65 H M L M L
25 L H H L VL 66 H M L H M
26 L H H M VL 67 H M M L L
27 L H H H L 68 H M M M L
28 M L L L L 69 H M M H M
29 M L L M M 70 H M H L L
30 M L L H H 71 H M H M M
31 M L M L M 72 H M H H H
32 M L M M M 73 H H L L L
33 M L M H H 74 H H L M L
34 M L H L M 75 H H L H L
35 M L H M H 76 H H M L M
36 M L H H VH 77 H H M M M
37 M M L L L 78 H H M H M
38 M M L M M 79 H H H L M
39 M M L H M 80 H H H M H
40 M M M L M 81 H H H H VH
41 M M M M M

Table key: VL = very low, L = Low, M = medium, H = high and VH = very high.

2.2. Skip Value Setup

In distributed clustering methods, the node operation that demands more energy is announcing
to others that a node has become a CH. This operation should require that the advice message reaches
every corner in the deployment field, which usually implies long distances. After each CH sends the
advice message, all the contributing nodes choose the closest CH based on the RSSI and they send
their data to it. Consequently, as less advice messages are sent, the longer the network lifetime will be.
In our approach, to improve the effective lifetime of the network, the nodes that have been promoted
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themselves as CH will remain in this situation for a certain number of rounds, avoiding sending
new advice messages while this configuration is kept. This decision is taken so that the expense due
to the advice message is distributed in several rounds. The number of rounds in which the same
configuration of CHs is maintained is referred to as skip. The convenient value for the skip should be
set according to the observed inertia of this type of network. However, this skip parameter should not
be very high because the CHs would deplete their energy quickly due to the amount of data that must
be sent to the BS. Nevertheless, the skip parameter should not be too low because it would have no
effect to extend the network lifetime [31].

Therefore, in order to tune this parameter according to the evolution of the network, we present a
new dynamic skip parameter setting guided by the BS. Thus, the BS is responsible for changing this
value three times by sending a setup message at three different instants:

• At network startup. The BS sends a message for the nodes to start working. In that message, it
will include the initial value of skip or skipinit. This message allows each node to estimate the
distance to the BS based on the RSSI of the received signal.

• After the first death of a node. To detect that instant, each time a CH sends information to the
BS, it includes the number of its contributing nodes. Consequently, the BS, after receiving all the
CH data messages, can detect if the total number of nodes that sent information is lower than the
initial one. If this happens, the BS will assume that there is one dead node at least. Thus, when it
detects the first death of a sensor, it will send a new configuration message with a new value of
the skip parameter or skipFND.

• After half of the nodes are dead. When the BS detects this event, it configures the nodes with
skipHND. This value will be kept constant until the network stops operating.

The two messages after the initial setup: (i) after the first dead and (ii) when the number of nodes
is halved, have been chosen carefully based on the previous research and empirical analysis. Both are
tied to those important moments because they mark the tendency of the network lifetime. First, when
the first node dies, some other nodes could have little residual energy too due to their work as CH
in a previous round. Hence, the skip value should decrease to allow other nodes to become CH and
balance the global residual energy. Thus, if the second setup message is sent too early, the first value of
the skip, which is the highest, will lose effectiveness because, when nodes have higher energy, this is
when CHs can be kept unchanged longer. The third message is sent when half of the nodes are dead so
it is possible that many nodes are close to death. Consequently, the skip value is set to 2 to select each
two rounds a new set of CHs, which is proven to be a good solution as we stated in [23]. If the second
message is delayed to any other instant after the 50% of the deaths, it could achieve minor benefits
because the skip value is greater than 2. In some scenarios, where nodes are grouped in some small
areas, delaying the second message would also deteriorate the energy balance of nodes in those areas.

The skip values used in this initial proposal are included in Table 3. These values have been
chosen based on the p parameter of the well-known algorithm LEACH. This parameter is considered
as the optimal percentage of CHs in a WSN and its value is usually set to 0.05. Thus, to obtain the
optimal number of CHs in a network, the parameter p is multiplied by the total number of nodes. The
number of skip parameters is limited to three because it represents the three main networks stages
with an important variation of the number of available nodes.

In summary, at the beginning, when all the nodes are available, the skip value is higher due to the
redundancy of nodes and the amount of battery they have. The second stage begins when a node dies,
which usually implies that an important number of nodes are close to death. As a consequence, the
skip value is reduced to change the selected CHs more often and redistribute the energy consumption
caused by being a CH among the remaining nodes. Finally, when only 10% of the nodes are available,
this skip value s kept at a minimum value to redistribute the CHs between all the alive nodes frequently,
but not at every round.
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Table 3. Skips values.

Skip Value

skipinit 5% Nnodes
skipFND 2.5% Nnodes
skipHND 2

The next section details the cluster head selection algorithm that is run every skip round to
rearrange the pool of active CHs.

2.3. Algorithm for the Cluster Head Election

The election algorithm presented in Algorithm 1 rules the process of every node to select itself as
a CH. After receiving any message from the BS, all the nodes update their skip value and it obtains
the output of the Type-2 Fuzzy System (ol , oh). This output is mapped in persistent memory, and it is
compared with a random number newly generated depending on the node history as can be seen in
Algorithm 1. Then, the node that was operating as a CH continues with this role when the random
number is lower than or equal to ol . If this condition does not hold, the node stops operating as CH.
Alternatively, a node that was not working as a CH in the previous selection will become a new CH
only when the random number is lower than or equal to oh. This process is repeated every skip rounds
until a new message from the BS is received or the node depletes its battery.

Once a node selects itself as a CH, it sends a message to the entire network. In each round, it
receives data from the nodes that are attached to it. Then, it sends the aggregated data to the BS.
The CH adds the number of nodes that have been connected to it in that message. It is important
to note that the CH structure is maintained for skip rounds and the CH configuration is only sent
at the beginning of this set of rounds. In that way, as was stated before, the expensive CH election
process is not carried out in each round and we get a trade-off between energy waste, the optimal
selection of CHs, and the messages sent. Overall, with this technique, the proposed algorithm achieves
a better performance than other representative examples of the bibliography as it is demonstrated in
the next section.

Algorithm 1: Election of Cluster Head

if node=CH then
if rand ≤ ol then

node=CH
else

node=only sensor
end

else
if rand ≤ oh then

nodo=CH
else

node=only sensor
end

end

3. Evaluation

The proposed clustering algorithm is evaluated by a wide set of simulations, which include several
WSN layouts. Those simulations have been carried out over Matlab, which provides a complete suite
of mathematical tools. In addition, to acquire valid results, a realistic energy model is included to
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estimate the energy consumption of the nodes. The details and results of the simulation are presented
next.

3.1. Energy Model

To carry out the experiments to test the proposed method, an energy model is needed to
simulate the data communications by the radio devices. Thus, we use the first order radio model,
which is widely used in the related literature [5]. The model, depicted in Figure 4, is described in
Equations (4)–(6). To check the results of the energy model, we have compared it with the results
presented in [32]. The comparison shows that the results are comparable with the measures shown
for a IEEE 802.15.4 compliant radio transceiver CC2420 chip at 2.4 GHz for the average distances
employed in our experiments.

Transmit 

Electronics
Ex Amplifier

Receive

Electronics

Eelect × l εamp × l × dn

ETx (l, d)

l bit packet

ERx (l)

Eelect × l

l bit packet

d

Figure 4. Illustration of the first order radio model.

ETx(l, d) = f (x) =

{
l · (Eelec + E f s · d2), d ≤ d0

l · (Eelec + Emp · d4), d > d0
(4)

d0 =

√
E f s

Emp
(5)

ERx(l) = Eelec · l (6)

where:

• l is the number of bits of the message.
• Eelec is the energy that consumes the transmitter or the receiver circuitry for each bit.
• d stands for the distance between the sender and the receiver of the message.
• E f s is the energy consumed by the amplifier according to the free space model (d ≤ d0) to get an

acceptable bit error rate (in Figure 4, it appears as εamp for both cases).
• Emp is the energy consumed by the amplifier in the multi-path (mp) model (d ≤ d0) to obtain an

acceptable bit error rate (in Figure 4 appears as εamp for both cases).

When a CH receives data from a contributing node, in addition to the energy spent in receiving
the data, the CHs spend energy in the data aggregation process [33]. In the aggregation process, all
the CHs send only a summary of those values, which is usually the result of a statistical operation.
The aggregation process reduces the number of bits sent when compared with the transmission of each
value independently. Therefore, the amount of energy spent by a CH in the reception and aggregation
process of a l-bit message is defined in Equation (7):

ERx−DA = (Eelec + EDA) · l (7)

where EDA is the energy spent by the processing unit of a CH when it aggregates the data received
from a contributing node.
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3.2. Experiment Design

The proposed algorithm is analyzed on a wireless sensor network deployed within a square field
of 100 × 100 m2. The number of nodes for all the experiments is 250, which are randomly distributed
within the area following a uniform distribution. All the nodes and the BS remain static for the whole
network lifetime, and the batteries of the nodes are never charged or replaced. The remaining setup
parameters are as follows: the initial energy of all the nodes is 0.5 J, the length of the control messages
is 200 bits, and the length of data messages is 2000 bits. All those setup parameters are summarized in
Table 4.

Table 4. Experiment setup parameters.

Parameter Value

Deployment field 100 × 100 m2

Nodes deployed 250
Initial energy of nodes 0.5 J
Length of control message 200 bits
Length of data message 2000 bits

To evaluate the proposal with different and realistic configurations of WSNs, the BS is placed in
three different locations that constitute the three different scenarios to test (see Figure 5):

• Scenario 1. The BS is at one corner of the square field at coordinates (100,0) meters.
• Scenario 2. The BS is far and outside the sensing area at coordinates (150,50) meters.
• Scenario 3. The BS is at the center of the deployment field at coordinates (50,50) meters.

Sensor nodes

x

Deployment 

field

y

Base station

Scenario 1

(100,0)

Scenario 3

(50,50)
Scenario 2

(150,50)

(100,100)
(0,100)

Figure 5. Deployment field for the scenarios used in the experiments.

The values for the variables of the energy model, which are the same for all scenarios, are found
in Table 5:
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Table 5. Energy consumption coefficients for the first order radio model and for data aggregation.

Parameter Value

Eelec 50 nJ/bit
EDA 5 nJ/bit
E f s 10 pJ/bit/m2

Emp 0.0013 pJ/bit/m4

Our proposal, named Distributed Clustering Algorithm Guided by Base Station (DCAGBS), is
compared with four other proposals widely used in the research literature:

• Low-Energy Adaptive Clustering Hierarchy (LEACH) [5]. It is a distributed algorithm based on a
pure stochastic CH selection method which is used like a reference in most clustering proposals.
The parameter p of this algorithm is set to 0.05 in our simulations.

• Cluster-Head Election using Fuzzy logic for wireless sensor networks (CHEF) [17]. CHEF is a
centralized method that decides the best CH based on an expert system. The fuzzy system has
three input variables: energy, concentration, and centrality of nodes.

• Energy-Efficient Distributed Clustering algorithm based on a Fuzzy approach with non-uniform
distribution (EEDCF) [34]. EEDCF is a distributed algorithm based on fuzzy logic. The inputs are
energy, the number of neighbor nodes, and the energy of those nodes. This method has a phase
in which different nodes compete to be CH. The node with the best fuzzy output becomes the
CH eventually.

• Enhanced Unequal Distributed Type-2 Fuzzy Clustering algorithm (EUDFC) [23]. EUDFC is an
interval Type-2 fuzzy distributed system. The system variables are energy, distance to the BS,
the average of the distances of the nodes that join a CH, and the number of rounds that a node is
only a sensor. EUDFC has a competition phase in which only nṗ CHs is chosen, where n is the
number of nodes in the system.

In addition to the reference clustering algorithm LEACH, the other algorithms represent
illustrative examples of fuzzy-logic based clustering algorithms with a centralized approach (CHEF)
and two distributed implementations based on Type-1 and Type-2 Interval Fuzzy systems (EEDCF
and EUDFC, respectively).

To test the performance of DCAGBS and the other four methods, they have been evaluated
with simulations for the three scenarios. Hence, each scenario has been simulated 30 times with
different random node locations to make the results statistically significant. The results obtained from
the average of those simulations for each scenario are three metrics widely used in wireless sensor
networks: (i) round at which the First, Node Dies (FND), (ii) round at which Half of the Nodes have
Died (HND), and (iii) round at which the Last Node Dies (LND). It will be considered that the LND
has been reached when only 10% of the nodes (and not for 0%) remain alive because in this situation
the network cannot usually operate properly (e.g., acquire the required measurements, transmit the
values, etc.) and the exchange of information cannot be considered complete.

3.3. Scenario 1

In this scenario, the BS is in a corner, which implies that some CHs could be far away from the BS,
at the other end of the diagonal of the deployment field. Those further nodes will spend more energy
when sending aggregated data to BS. In Figure 6, the plotted data show that CHEF has better values in
terms of FND and HND but not in terms of LND. DCAGBS is the best distributed method, and its
results are similar to CHEF. In short, DCAGBS adapts very well to this location of the BS, especially for
those applications that require a very long lifetime because DCAGBS has the largest LND.
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Figure 6. First Node Dead (FND), Half Node Dead (HND), and Last Node Dead (LND) for scenario 1.

3.4. Scenario 2

The second scenario is the most restrictive one because the BS is outside the sensing area, far
from the edge of the network and, consequently, far from all the nodes. Figure 7 shows that the
performance metrics are lower than in the previous case for all the tested methods. Again, DCAGBS
gets very good results, only matched by CHEF in FND and LND. DCAGBS is the best proposal for
LND, which implies that the applications have a longer lifetime. Additionally, the value for HND
obtained by DCAGBS clearly outperforms other distributed methods. This implies that, when using
DCAGBS, we can get that at least half of the nodes are operative much longer.

Figure 7. First Node Dead (FND), Half Node Dead (HND), and Last Node Dead (LND) for scenario 2.
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3.5. Scenario 3

The last evaluated scenario is the ideal configuration for a WSN as the BS is placed in the
center of the area and the average distance to all nodes is the smallest one Figure 8. Thus, the
energy consumption of nodes in each round is lower than in previous scenarios. Consequently,
the performance metrics are the highest ones compared with the ones obtained in the other two
scenarios. For this configuration, DCAGBS obtains the best results for all metrics compared with all
the analyzed algorithms.

Figure 8. First Node Dead (FND), Half Node Dead (HND), and Last Node Dead (LND) for scenario 3.

3.6. Analysis of the Results

We can observe that the hybrid implementation of the clustering algorithm is able to lead to
better results for the three types of scenarios because of the dynamic skip value (see Table 3). Thus,
in comparison with EUDFC, which employs a constant keep value of 2, DCAGBS with a skip value
of 13 (5% of 250 nodes), considerably increases the value of rounds for FND in Scenario 1 and 3.
For Scenario 2, due to the long distance to the BS, the value of rounds to the FND are quite similar
because the set of CH in DCAGBS are kept constant for a longer time. Then, the number of nodes
alive at HND for DCAGBS clearly outperforms EUDFC and EEDCF due to the saved energy in the
first period. In the phase from the FND to the HND, which uses the second skip value of 7 (2.5% of
250 nodes), DCAGBS keeps saving energy that will eventually allow it to obtain the best LND for the
three scenarios. From the third message, when half of the nodes are dead, all nodes set the skip value to
2. This allows DCAGBS a better balance of the remaining energy in the network while it keeps saving
energy. In addition, the input variables in the fuzzy logic system configured for DCAGBS seem to be
more appropriate to model the evolution of the network when we compare the results with CHEF.

4. Conclusions and Future Work

The distributed clustering algorithms present a series of advantages over the centralized ones in
terms of lower cost of the sensors and better adaptation to small scenarios. Centralized algorithms
usually get good metrics, but they rely on a vast knowledge of the network, which is not feasible
to get in many cases due to the excessive number of messages that should be exchanged or the size,
or cost of the additional hardware required in the nodes (e.g., GPS). Our proposal (DCAGBS) presents
a BS-guided distributed algorithm that uses an interval Type-2 fuzzy system to adapt the selection
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of CHs to the changing characteristics of the network like, for example, the lack of accuracy in many
control variables. In our method, the BS is able to change the algorithm configuration dynamically.
Thus, with the occasional intervention of the BS, the network adapts its configuration according to
the death of sensors, changing their behavior after the first and half of the deaths. The algorithm has
been compared with other proposals and the goodness of it is demonstrated by simulation in several
scenarios. This improvement is especially important in terms of the lifetime of the network, since
DCAGBS significantly outperforms all the other proposals.

As future work, we will investigate the proposed approach in larger networks and with a different
number of nodes to validate it. Additionally, an optimization of the skip values will be accomplished
to see how it is dependent on the new number of nodes and the size of the deployment field.

Author Contributions: Conceptualization, A.-J.Y.-D., J.-C.C.-M., and A.T.-C.; methodology, A.-J.Y.-D. and
J.-C.C.-M.; software, A.-J.Y.-D. and J.-C.C.-M.; validation, A.-J.Y.-D., J.-C.C.-M., and A.T.-C.; formal analysis,
A.-J.Y.-D.; investigation, A.-J.Y.-D., J.-C.C.-M. and A.T.-C.; resources, A.-J.Y.-D. and J.-C.C.-M.; data curation,
A.-J.Y.-D. and J.-C.C.-M.; writing—original draft preparation, A.-J.Y.-D. and J.-C.C.-M.; writing—review and
editing, J.-C.C.-M. and A.T.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by Plan Propio de Investigación de la Universidad de Málaga (Spain).

Acknowledgments: In memoriam Antonio-José Sáez-Castillo. We are thankful for his support and help in
this research.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Mohamed, R.E.; Saleh, A.I.; Abdelrazzak, M.; Samra, A.S. Survey on wireless sensor network applications
and energy efficient routing protocols. Wirel. Pers. Commun. 2018, 101, 1019–1055. [CrossRef]

2. Pike, M.; Mustafa, N.M.; Towey, D.; Brusic, V. Sensor Networks and Data Management in Healthcare:
Emerging Technologies and New Challenges. In Proceedings of the 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC), Milwaukee, WI, USA, 15–19 July 2019; Volume 1,
pp. 834–839. [CrossRef]

3. Abujubbeh, M.; Al-Turjman, F.; Fahrioglu, M. Software-defined wireless sensor networks in smart grids:
An overview. Sustain. Cities Soc. 2019, 51, 101754. [CrossRef]

4. Liu, X. A Survey on Clustering Routing Protocols in Wireless Sensor Networks. Sensors 2012, 12, 11113–11153.
[CrossRef] [PubMed]

5. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless
microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System
Sciences, Maui, HI, USA, 4–7 January 2000; Volume 2, p. 10. [CrossRef]

6. Kia, G.; Hassanzadeh, A. A multi-threshold long life time protocol with consistent performance for wireless
sensor networks. AEU-Int. J. Electron. Commun. 2019, 101, 114–127. [CrossRef]

7. Younis, O.; Fahmy, S. HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor
networks. IEEE Trans. Mob. Comput. 2004, 3, 366–379. [CrossRef]

8. Ye, M.; Li, C.; Chen, G.; Wu, J. EECS: an energy efficient clustering scheme in wireless sensor networks.
In Proceedings of the 24th IEEE International Performance, Computing, and Communications Conference,
Phoenix, AZ, USA, 7–9 April 2005; pp. 535–540.

9. Pietrabissa, A.; Liberati, F. Dynamic distributed clustering in wireless sensor networks via Voronoi
tessellation control. Int. J. Control 2019, 92, 1001–1014. [CrossRef]

10. Huo, H.; Guo, J.; Li, Z.L. Hyperspectral Image Classification for Land Cover Based on an Improved Interval
Type-II Fuzzy C-Means Approach. Sensors 2018, 18, 363. [CrossRef]

11. Gencer, A. Analysis and Control of Fault Ride-Through Capability Improvement for Wind Turbine Based on
a Permanent Magnet Synchronous Generator Using an Interval Type-2 Fuzzy Logic System. Energies 2019,
12, 2289. [CrossRef]

http://dx.doi.org/10.1007/s11277-018-5747-9
http://dx.doi.org/10.1109/COMPSAC.2019.00123
http://dx.doi.org/10.1016/j.scs.2019.101754
http://dx.doi.org/10.3390/s120811113
http://www.ncbi.nlm.nih.gov/pubmed/23112649
http://dx.doi.org/10.1109/HICSS.2000.926982
http://dx.doi.org/10.1016/j.aeue.2019.01.034
http://dx.doi.org/10.1109/TMC.2004.41
http://dx.doi.org/10.1080/00207179.2017.1378441
http://dx.doi.org/10.3390/s18020363
http://dx.doi.org/10.3390/en12122289


Sensors 2020, 20, 2312 17 of 18

12. Jiang, Q.; Jin, X.; Hou, J.; Lee, S.; Yao, S. Multi-Sensor Image Fusion Based on Interval Type-2 Fuzzy Sets
and Regional Features in Nonsubsampled Shearlet Transform Domain. IEEE Sens. J. 2018, 18, 2494–2505.
[CrossRef]

13. Pandey, M.; Litoriya, R.; Pandey, P. Identifying causal relationships in mobile app issues: An interval type-2
fuzzy DEMATEL approach. Wirel. Pers. Commun. 2019, 108, 683–710. [CrossRef]

14. Cuevas-Martinez, J.C.; Yuste-Delgado, A.J.; Triviño-Cabrera, A. Cluster Head Enhanced Election Type-2
Fuzzy Algorithm for Wireless Sensor Networks. IEEE Commun. Lett. 2017, 21, 2069–2072. [CrossRef]

15. Moorthi; Thiagarajan, R. Energy consumption and network connectivity based on Novel-LEACH-POS
protocol networks. Comput. Commun. 2020, 149, 90–98. [CrossRef]

16. Agrawal, D.; Pandey, S. FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless
sensor networks. Int. J. Commun. Syst. 2018, 31, e3448. [CrossRef]

17. Gupta, I.; Riordan, D.; Sampalli, S. Cluster-head election using fuzzy logic for wireless sensor networks.
In Proceedings of the 3rd Annual Communication Networks and Services Research Conference (CNSR’05),
Halifax, NS, Canada, 16–18 May 2005; pp. 255–260. [CrossRef]

18. Zhang, F.; Zhang, Q.; Sun, Z. ICT2TSK: An improved clustering algorithm for WSN using a type-2
Takagi-Sugeno-Kang Fuzzy Logic System. In Proceedings of the 2013 IEEE Symposium on Wireless
Technology Applications (ISWTA), Kuching, Malaysia, 22–25 September 2013; pp. 153–158. [CrossRef]

19. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for
wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [CrossRef]

20. Thangaramya, K.; Kulothungan, K.; Logambigai, R.; Selvi, M.; Ganapathy, S.; Kannan, A. Energy aware
cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Comput. Netw. 2019,
151, 211–223. [CrossRef]

21. Shivappa, N.; Manvi, S.S. Fuzzy-based cluster head selection and cluster formation in wireless sensor
networks. IET Netw. 2019, 8, 390–397. [CrossRef]

22. Merabtine, N.; Djenouri, D.; Zegour, D.E.; Boumessaidia, B.; Boutahraoui, A. Balanced clustering approach
with energy prediction and round-time adaptation in wireless sensor networks. Int. J. Commun. Netw.
Distrib. Syst. 2019, 22, 245–274. [CrossRef]

23. Yuste-Delgado, A.J.; Cuevas-Martinez, J.C.; Triviño-Cabrera, A. EUDFC-Enhanced Unequal Distributed
Type-2 Fuzzy Clustering Algorithm. IEEE Sens. J. 2019, 19, 4705–4716. [CrossRef]

24. Sugeno, M. Industrial Applications of Fuzzy Control; Elsevier Science Inc.: New York, NY, USA, 1985.
25. Zadeh, L.A.; Klir, G.J.; Yuan, B. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers; World Scientific:

Singapore, 1996; Volume 6.
26. Castillo, O.; Melin, P. A review on interval type-2 fuzzy logic applications in intelligent control. Inf. Sci.

2014, 279, 615–631. [CrossRef]
27. Mamdani, E.H. Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng.

1974, 121, 1585–1588. [CrossRef]
28. Jassbi, J.J.; Serra, P.J.A.; Ribeiro, R.A.; Donati, A. A Comparison of Mandani and Sugeno Inference Systems

for a Space Fault Detection Application. In Proceedings of the 2006 World Automation Congress, Budapest,
Hungary, 24–26 July 2006; pp. 1–8.

29. Tikk, D.; Kóczy, L.T.; Gedeon, T.D. A survey on universal approximation and its limits in soft computing
techniques. Int. J. Approx. Reason. 2003, 33, 185–202. [CrossRef]

30. Subhedar, M.; Birajdar, G. Comparison of mamdani and sugeno inference systems for dynamic spectrum
allocation in cognitive radio networks. Wirel. Pers. Commun. 2013, 71, 805–819. [CrossRef]

31. Cuevas-Martinez, J.C.; Yuste-Delgado, A.J.; Leon-Sanchez, A.J.; Saez-Castillo, A.J.; Triviño-Cabrera, A.
A New Centralized Clustering Algorithm for Wireless Sensor Networks. Sensors 2019, 19, 4391. [CrossRef]
[PubMed]

32. Trakadas, P.; Zahariadis, T.; Leligou, H.C.; Voliotis, S.; Papadopoulos, K. Analyzing energy and time
overhead of security mechanisms in Wireless Sensor Networks. In Proceedings of the 2008 15th International
Conference on Systems, Signals and Image Processing, Bratislava, Slovak Republic, 25–28 June 2008;
pp. 137–140.

http://dx.doi.org/10.1109/JSEN.2018.2791642
http://dx.doi.org/10.1007/s11277-019-06424-9
http://dx.doi.org/10.1109/LCOMM.2017.2703905
http://dx.doi.org/10.1016/j.comcom.2019.10.006
http://dx.doi.org/10.1002/dac.3448
http://dx.doi.org/10.1109/CNSR.2005.27
http://dx.doi.org/10.1109/ISWTA.2013.6688759
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1016/j.comnet.2019.01.024
http://dx.doi.org/10.1049/iet-net.2018.5102
http://dx.doi.org/10.1504/IJCNDS.2019.098869
http://dx.doi.org/10.1109/JSEN.2019.2900094
http://dx.doi.org/10.1016/j.ins.2014.04.015
http://dx.doi.org/10.1049/piee.1974.0328
http://dx.doi.org/10.1016/S0888-613X(03)00021-5
http://dx.doi.org/10.1007/s11277-012-0845-6
http://dx.doi.org/10.3390/s19204391
http://www.ncbi.nlm.nih.gov/pubmed/31614457


Sensors 2020, 20, 2312 18 of 18

33. Dhand, G.; Tyagi, S. Data aggregation techniques in WSN: Survey. Procedia Comput. Sci. 2016, 92, 378–384.
[CrossRef]

34. Zhang, Y.; Wang, J.; Han, D.; Wu, H.; Zhou, R. Fuzzy-logic based distributed energy-efficient clustering
algorithm for wireless sensor networks. Sensors 2017, 17, 1554. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2016.07.393
http://dx.doi.org/10.3390/s17071554
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Algorithm
	Interval Type-2 Fuzzy System
	Variables of the Type-2 Fuzzy System
	Knowledge Base of the Type-2 Fuzzy System

	Skip Value Setup
	Algorithm for the Cluster Head Election

	Evaluation
	Energy Model
	Experiment Design
	Scenario 1
	Scenario 2
	Scenario 3
	Analysis of the Results

	Conclusions and Future Work
	References

