RUJA: Repositorio Institucional de Producción Científica

 

An ensemble multi-ANN approach for virtual oxygen sensing and air leakage prediction in biomass gasification plants

dc.contributor.authorEscámez, Antonio
dc.contributor.authorAguado-Molina, Roque
dc.contributor.authorSánchez-Lozano, Daniel
dc.contributor.authorJurado-Melguizo, Francisco
dc.contributor.authorVera, David
dc.date.accessioned2025-07-07T07:56:18Z
dc.date.available2025-07-07T07:56:18Z
dc.date.issued2025-01-16
dc.description.abstractA recurring challenge in the operation of biomass gasification plants is the occurrence of air leaks, which prevent the resulting lean producer gas from meeting the required standards for power generation. In order to address this issue, an ensemble model composed of multiple artificial neural networks (ANNs) was developed to predict the oxygen concentration in the gas mixture and detect anomalous operating conditions (air leakage). Throughout an extensive experimental campaign, the volumetric composition of the gas mixture from a semi-industrial scale downdraft gasifier fueled with biomass pellets was systematically measured and recorded at a constant time step of 10 s using an inline portable syngas analyzer equipped with NDIR, TCD and ECD sensors. The ensemble multi-ANN model was trained with a total of 24 representative datasets, including instances of both normal and anomalous operating conditions, using k-fold cross validation with 10 submodels. The results revealed an R² of 0.99 and an RMSE below 0.3, indicating that the model’s error margin is lower than that of the ECD sensor. The developed model can serve as a supervisor for the ECD sensor by performing a double verification or even potentially replacing the ECD sensor, with the model assuming the task of predicting the oxygen concentration using the data recorded by the NDIR sensor.
dc.description.sponsorshipRoque Aguado, Antonio Escámez, and Daniel Sánchez-Lozano gratefully acknowledge financial support from Ministerio de Ciencia, Innovación y Universidades (Spain) under the FPU Program (Refs. FPU19/00930, FPU22/00741, and FPU22/00879, respectively).
dc.identifier.citationA. Escámez, R. Aguado, D. Sánchez-Lozano, F. Jurado, D. Vera, An ensemble multi-ANN approach for virtual oxygen sensing and air leakage prediction in biomass gasification plants, Renewable Energy 242 (2025) 122376
dc.identifier.issn1879-0682
dc.identifier.otherhttps://doi.org/10.1016/j.renene.2025.122376
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0960148125000382
dc.identifier.urihttps://hdl.handle.net/10953/5850
dc.language.isoeng
dc.publisherELSEVIER
dc.relation.ispartofRenewable Energy
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spainen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectDowndraft gasifier
dc.subjectProducer gas
dc.subjectAir leakage
dc.subjectVirtual sensor
dc.subjectArtificial neural network
dc.subjectMachine learning
dc.subject.udc62
dc.titleAn ensemble multi-ANN approach for virtual oxygen sensing and air leakage prediction in biomass gasification plants
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Escámez et al. (2025) - Renew Energy.pdf
Tamaño:
14.63 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones