Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10953/3180
Título: Stochastic Bernstein polynomials: uniform convergence in probability with rates
Autoría: Adell, José A.
Cárdenas-Morales, Daniel
Resumen: We introduce stochastic variants of the classical Bernstein polynomials associated with a continuous function f , built up from a general triangular array of random variables. We discuss the uniform convergence in probability of the approximation process that they represent, providing at the same time rates of convergence. In the particular case in which the triangular array of random variables consists of the uniform order statistics, we give a positive answer to a conjectured raised in Wu and Zhou (Adv. Comput. Math. 46, 8, 2020) about an exponential rate of convergence in probability.
Palabras clave: Stochastic Bernstein polynomials
Uniform convergence in probability
Rates of convergence
Confidence band
Bernstein-Durrmeyer polynomials
Fecha: 27-feb-2020
Patrocinador: This work is partially supported by the Spanish government Research Project PGC2018-097621-B-I00. The second author is also supported by Junta de Andalucía Research Group FQM-0178.
Editorial: Springer
Citación: Adell, J.A., Cárdenas-Morales, D. Stochastic Bernstein polynomials: uniform convergence in probability with rates. Adv Comput Math 46, 16 (2020).
Aparece en las colecciones: DM-Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RUJA.pdfaccepted version131,7 kBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original


Los ítems de RUJA están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.