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a b s t r a c t 

The concept of hesitant fuzzy preference relation (HFPR) has been recently introduced to allow the de- 

cision makers (DMs) to provide several possible preference values over two alternatives. This paper in- 

troduces a new type of fuzzy preference structure, called incomplete HFPRs, to describe hesitant and 

incomplete evaluation information in the group decision making (GDM) process. Furthermore, we define 

the concept of multiplicative consistency incomplete HFPR and additive consistency incomplete HFPR, 

and then propose two goal programming models to derive the priority weights from an incomplete HFPR 

based on multiplicative consistency and additive consistency respectively. These two goal programming 

models are also extended to obtain the collective priority vector of several incomplete HFPRs. Finally, a 

numerical example and a practical application in strategy initiatives are provided to illustrate the validity 

and applicability of the proposed models. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Since the introduction of fuzzy sets by Zadeh [45] , several ex-

ensions and generalizations have been proposed (see Ref. [6] ), in-

luding the intuitionistic fuzzy sets [5] , interval-valued fuzzy sets

44] , type-2 fuzzy sets [24] , type n fuzzy sets [15] and fuzzy mul-

isets [23] . Another extension of fuzzy sets is called hesitant fuzzy

ets (HFSs), which were firstly introduced by Torra [31] . The moti-

ation for introducing HFSs is that it is sometimes difficult to de-

ermine the membership of an element into a set, and in some

ircumstances, this difficulty is because there is a set of possible

alues. 

HFSs are a new effective tool used to express human’s hesitancy

n daily life and have been receiving an increasing amount of at-

ention in different areas, mainly in group decision making (GDM)

7,12,27,29,34,43,46] . Xia and Xu [33] defined the hesitant fuzzy

reference relations (HFPRs) and hesitant multiplicative preference

elations (HMPRs), which are based on the fuzzy preference re-

ations and multiplicative preference relations, respectively. There

re two more types of preference relations: interval-valued hesi-

ant preference relations (IVHPRs) [7] and hesitant fuzzy linguistic
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nd Hydraulic Engineering, Hohai University, Nanjing 210098, PR China. 
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reference relations (HFLPRs) [48] which are based on the hesi-

ant fuzzy linguistic term sets [27,28] . Relationships of HFSs with

ther types of fuzzy sets can be found in [26] (see Section 5 ) and

 historical overview of the fuzzy sets extensions analyzing their

elationship can be found in [6] . 

The key motivating factors to introducing the concept of incom-

lete HFPR can be summarized as follows: ( 1 ) all of the afore-

entioned preference relations (HFPR, IVHPR, HMPR and HFLPR)

o not consider the incomplete information. ( 2 ) In many real de-

ision making problems, due to time pressure, lack of knowledge,

nd the DM’s limited expertise related with the problem domain

1–4,8,10,17–19,37,40] , the DMs may obtain a preference relation

ith incomplete entries. Incomplete HFPR do not merely permit

he DMs to provide all of the possible values, but also allow them

o give null values when comparing two alternatives. ( 3 ) It can

nrich the theoretical system of preference relations. Zhang et al.

47] proposed two estimation procedures to estimate the missing

nformation in an expert’s incomplete HFPR, which are based on

u et al.’s [40] models. 

GDM problems consist in finding the best alternative(s) from a

et of feasible ones according to the preference relations provided

y a group of experts. In order to rank the alternatives, one di-

ect method is to derive priorities from the group preference re-

ations. Dong et al. [14] developed a framework to deal with the

ndividual selection problem of the numerical scale and prioriti-

ation method in AHP. Dong and Herrera-Viedma [13] proposed a

http://dx.doi.org/10.1016/j.knosys.2016.01.047
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.01.047&domain=pdf
mailto:xuyejohn@163.com
http://dx.doi.org/10.1016/j.knosys.2016.01.047
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consistency-driven automatic methodology to set interval numer-

ical scales of 2-tuple linguistic term sets in the decision making

problems. 

Up to now, there has been no investigation of deriving the

priority weights from the incomplete HFPR. The aim of this pa-

per is to propose some models to obtain priorities from incom-

plete HFPRs which are based on multiplicative consistency [9,11,30]

and additive consistency [3,8,38] of fuzzy preference relations

[19,30,38,41] , respectively. As the DM gives a HFPR, each compari-

son has several values and the DM is hesitant on these values, we

should abstract the most reasonable information from these val-

ues. That is we could derive the most consistent fuzzy preference

relation from the HFPR to make decision. This is the main idea of

the paper, and it is a new idea to deal with HFPR. 

These models are programming models for multiplicative con-

sistency incomplete HFPR and additive consistency incomplete

HFPR respectively. Furthermore, we extend these programing mod-

els to obtain the collective priority vector of several incomplete HF-

PRs for the sake of application in GDM process. To show the poten-

tial of this proposal, we introduce two illustrative cases of study to

show the effectiveness of the developed models. 

The remained of this paper is organized as follows. Section 2

briefly reviews some basic knowledge on fuzzy preference relation,

HFS and HFPR. Section 3 introduces the concepts of incomplete

HFPR, acceptable incomplete HFPR, multiplicative consistent in-

complete HFPR and additive consistency incomplete HFPR. In

Section 4 , we develop some new goal programming models to

derive the priority weights from multiplicative consistency incom-

plete HFPR and additive consistency incomplete HFPR. Section 5

provides a numerical example and a case study in GDM concern-

ing strategy initiatives showing validity and applicability of the

proposed models. Some conclusions are pointed out in Section 6 . 

2. Preliminaries 

In this section, we will give the definitions of fuzzy preference

relation, hesitant fuzzy set, hesitant fuzzy element and hesitant

fuzzy preference relation. 

Denote N = { 1 , 2 , . . . , n } , M = { 1 , 2 , . . . , m } . Let X = { x 1 , x 2 , . . . ,
x n } (n ≥ 2) be a finite set of alternatives, where x i denotes the i th

alternative. 

2.1. Fuzzy preference relation 

Definition 1 [20] . Let R = ( r i j ) n ×n be a preference relation, then R

is called a fuzzy preference relation, if 

r i j ∈ [0 , 1] , r i j + r ji = 1 , r ii = 0 . 5 for all i, j ∈ N. (1)

Definition 2 [30] . Let R = ( r i j ) n ×n be a fuzzy preference relation,

then R is called a multiplicative consistency fuzzy preference rela-

tion, if the following multiplicative transitivity is satisfied: 

r ik r k j r ji = r ki r jk r i j f or all i, j, k ∈ N. (2)

Definition 3 [9,30] . If R = ( r i j ) n ×n is a multiplicative consistency

fuzzy preference relation, then such a preference relation is given

by 

r i j = 

w i 

w i + w j 

, i, j ∈ N. (3)

where W = ( w 1 , w 2 , . . . , w n ) 
T is the priority weighting vector for

the fuzzy preference relation R = ( r i j ) n ×n and 

∑ n 
i = 1 w i = 1 , w i = 0 ,

i ∈ N. 

Definition 4 [30] . Let R = ( r i j ) n ×n be a fuzzy preference relation,

then R is called an additive consistency fuzzy preference relation,

if the following additive transitivity is satisfied: 

r i j = r ik − r jk + 0 . 5 for all i, j, k ∈ N. (4)
For the additive consistency fuzzy preference relation, there is a

unction between the element r i j and the weights w i and w j . The

unction is obtained as follows. 

emma 1 [39] . Let R = ( r i j ) n ×n be a fuzzy additive transitive prefer-

nce relation, W = ( w 1 , w 2 , . . . , w n ) T be the corresponding weighting

ector, where 0 ≤ w i ≤ 1 , then there exists a positive number β , and

uch a relation can be expressed as follows : 

 i j = 0 . 5 + β( w i − w j ) . (5)

emark 1. Lemma 1 denotes that there is an explicit function re-

ation between r i j and the ranking values w i and w j . Chiclana et

l. [11] constructed a similar relationship between the additive re-

iprocal preference relation and utility values. Tanino [30] first es-

ablished the above correspondence where β always equals to 0.5,

ut it was later shown that the correspondence is not always valid

rom different perspectives [16,21,22,35,36,39] . In the following, we

ill determine the value of β . 

heorem 1. If the priority vector of the additive transitive perfectly

onsistency fuzzy preference relation R is derived by normalizing rank

ggregation method, then β= 

n −1 
2 . 

roof. If the priority vector of the additive transitive perfectly con-

istency fuzzy preference relation R is derived by normalizing rank

ggregation method [35] , then 

 i = 

∑ n 
k = 1 r ik − 0 . 5 ∑ n 

i = 1 
∑ n 

k = 1 ,k � = i r ik 
= 

∑ n 
k = 1 r ik − 0 . 5 

n (n −1) 
2 

, i ∈ N. (6)

 j = 

∑ n 
k = 1 r jk − 0 . 5 ∑ n 

i = 1 
∑ n 

k = 1 ,k � = j r jk 
= 

∑ n 
k = 1 r jk − 0 . 5 

n (n −1) 
2 

, i ∈ N. (7)

Introducing Eqs. (6) and ( 7 ) into Eq. (5) , then 

 i j = β( w i − w j ) + 0 . 5 

= β

∑ n 
k =1 ( r ik − r jk ) 

n (n −1) 
2 

+ 0 . 5 

Since 

 i j = r ik − r jk + 0 . 5 

then 

 i j = β

∑ n 
k = 1 ( r i j − 0 . 5) 

n (n −1) 
2 

+ 0 . 5 = β
n r i j − n/ 2 

n (n −1) 
2 

+ 0 . 5 (8)

So we can get β = 

n −1 
2 , which complete the proof. �

That is to say, the relationship between r i j and w i − w j is: 

 i j = 0 . 5 + 

n − 1 

2 

( w i − w j ) . (9)

emark 2. In addition, due to the fact that 0 < r i j < 1 , we have

 < 0 . 5 + 

n −2 
2 ( w i − w j ) < 1 , that is −1 / (n − 1) < w i − w j < 1 / (n −

) . 

.2. Hesitant fuzzy set 

Torra [31] originally developed the definition of hesitant fuzzy

ets (HFSs) as follows. 

efinition 5. [31,32] . Let X be a reference set, an HFS on X is de-

ned in terms of a function h A (x ) that returns a non-empty subset

f [0,1] when it is applied to X , i.e. 

 = { 〈 x, h A (x ) 〉 | x ∈ X } . (10)

here h A (x ) is a set of some different values in [0,1], representing

he possible membership degrees of the element x ∈ X to A . h A (x )

s called a hesitant fuzzy element (HFE), a basic unit of HFS. 
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.3. Hesitant fuzzy preference relation 

On the basis of HFSs and FPRs, Xia and Xu [33] introduced hes-

tant fuzzy preference relations (HFPRs) as follows. 

efinition 6 [33,49] . Let X = { x 1 , x 2 , . . . , x n } be a fixed set, then

 HFPR H on X is represented by a matrix H = ( h i j ) n ×n ⊂ X × X ,

here h i j = { γ l 
i j 
| l = 1 , . . . , # h i j } ( # h i j is the number of values in

 i j ) is an HFE indicating all the possible values of preference de-

rees of the alternative x i over x j . For all i, j = 1 , 2 , . . . , n , h i j should

atisfy the following conditions: 
 

 

 

γ σ (l) 
i j 

+ γ σ (l) 
ji 

= 1 

h ii = { 0 . 5 } 
# h i j = # h ji 

(11) 

here γ σ (l) 
i j 

is the l th largest element in h i j . 

. Incomplete hesitant fuzzy preference relation 

As described in the introduction, incomplete FPRs do not

erely permit the DMs to provide all of the possible values, but

lso allow them to give null values when comparing two alterna-

ives. This is formally defined as follows. 

efinition 7. Let X = { x 1 , x 2 , . . . , x n } be a fixed set, then an incom-

lete HFPR H on X is represented by a matrix H = ( h i j ) n ×n ⊂ X × X ,

or all known HFEs h i j = { γ l 
i j 
| l = 1 , . . . , # h i j } ( # h i j is the number of

alues in h i j ) indicate all the possible values of preference degrees

f the alternative x i over x j and should satisfy the following condi-

ions: 
 

 

 

γ σ (l) 
i j 

+ γ σ (l) 
ji 

= 1 

h ii = { 0 . 5 } 
# h i j = # h ji 

(12) 

here γ σ (l) 
i j 

is the l th largest element in h i j . 

For the convenience of computations, we construct an indica-

ion matrix � = ( δi j ) n ×n [42] of the incomplete HFPR H = ( h i j ) n ×n ,

here 

i j = 

{
0 , h i j = −
1 , h i j � = − , and h i j = −indicates a missing HFE h i j . 

It should be noted that when δi j = 1 for all i, j ∈ N, incomplete

FPR becomes complete HFPR, indicating that the latter is a special

ase of the former. 

Based on the concepts of multiplicative consistency fuzzy pref-

rence relation and additive consistency fuzzy preference relation,

e will introduce the concept of multiplicative consistency incom-

lete HFPR and additive consistency incomplete HFPR in the fol-

owing. 

efinition 8. Let H = ( h i j ) n ×n be an incomplete HFPR, if the miss-

ng HFEs of H can be determined by the known HFEs, then H is

alled an acceptable incomplete HFPR, otherwise, H is not an ac-

eptable incomplete HFPR. 

heorem 2. Let H = ( h i j ) n ×n be an incomplete HFPR, the necessary

ondition of acceptable incomplete HFPR H is that there is at least

ne known HFE in each row or column of H except for the diagonal

FE, i.e. it needs at least (n −1) judgments. 

efinition 9. Let H = ( h i j ) n ×n be an incomplete HFPR, then H is

alled a multiplicative consistency incomplete HFPR, if some of its

FEs cannot be given by the DM, which we denote by the symbol

, and the others can be provided by the DM, which satisfy 

w i 

w i + w j 

= γ σ (1) 
i j 

or . . . o r γ
σ (# h i j ) 

i j 
, i, j ∈ N. (13)
efinition 10. Let H = ( h i j ) n ×n be an incomplete HFPR, then H is

alled an additive consistency incomplete HFPR, if some of its HFE

annot be given by the DM, which we denote by symbol −, and

he others can be provided by the DM, which satisfy 

σ (1) 
i j 

or . . . o r γ
σ (# h i j ) 

i j 
= 0 . 5 + 

n − 1 

2 

( w i − w j ) , i, j ∈ N. (14)

. Deriving the priority weights from incomplete HFPRs in 

DM 

Let’s suppose a set of alternatives X = { x 1 , x 2 , . . . , x n } , and a

onstructed incomplete HFPR H = ( h i j ) n ×n , where h i j = { γ l 
i j 
| l =

 , 2 , . . . , # h i j } . Since each element in h i j is a possible preference

egree for the comparison of the alternative x i over x j . 

(1) By Eq. (13) , the multiplicative consistency preference rela-

ion can be obtained by: 

i j 

w i 

w i + w j 

= δi j 

(
γ σ (1) 

i j 
or . . . o r γ

σ (# h i j ) 

i j 

)
, i, j ∈ N. (15)

here γ σ (l) 
i j 

is the l th largest element in h i j , # h i j is the number of

lements in h i j and δi j = { 0 , h i j = −
1 , h i j � = −

. 

Let S( γi j ) = γ σ (1) 
i j 

or . . . o r γ
σ (# h i j ) 

i j 
, by Eq. (15) , we have 

i j 

w i 

w i + w j 

= δi j S( γi j ) 

 δi j w i = δi j ( w i + w j )(S( γi j )) 

 δi j (1 − S( γi j )) w i = δi j S( γi j ) w j , i, j ∈ N. (16) 

Due to the fact that 1 − S( γi j ) = (1 − γ σ (1) 
i j 

) or . . . o r(1 −
σ (# h i j ) 

i j 
) , then we have 1 − S( γi j ) = S( γ ji ) , thus Eq. (16) can be

ewritten as 

i j S( γ ji ) w i = δi j S( γi j ) w j , i, j ∈ N. (17)

Nevertheless, Eq. (17) does not always hold in the general case.

here is deviation between δi j S( γ ji ) w i and δi j S( γi j ) w j , and the de-

iation degree is given by Eq. (18) . 

 i j = δi j | S( γ ji ) w i − S( γi j ) w j | (18)

Thus, we could construct the following multi-objective pro-

ramming model: 

( M −1 ) min ε i j = δi j | S( γ ji ) w i − S( γi j ) w j | , i, j ∈ N 

s . t . 

n ∑ 

i =1 

w i = 1 , w i ≥ 0 , i, j ∈ N. 

As | S( γ ji ) w i − S( γi j ) w j | = | S( γi j ) w j − S( γ ji ) w i | , the above min-

mization problem could be solved by solving the following pro-

ramming model: 

( M −2 ) min F = 

n −1 ∑ 

i = 1 

n ∑ 

j = i + 1 
s i j d 

+ 
i j 

+ t i j d 
−
i j 

 . t . 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δi j (S( γ ji ) w i − S( γi j ) w j ) − d + 
i j 

+ d −
i j 

= 0 , i, j ∈ N, j > i ∑ n 
i = 1 w i = 1 , w i ≥ 0 , i ∈ N 

d + 
i j 
, d −

i j 
≥ 0 , i, j ∈ N, j > i 

here d + 
i j 

is the positive deviation from the target of the goal ε i j ,

efined as 

 

+ 
i j 

= δi j (S( γ ji ) w i − S( γi j ) w j ) ∨ 0 . 

 

−
i j 

is the negative deviation from the target of the goal ε i j , defined

s 

 

−
i j 

= δi j (S( γi j ) w j − S( γ ji ) w i ) ∨ 0 . 
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s i j and t i j are the weights corresponding to d + 
i j 

and d −
i j 

,

respectively. 

In order to solve the above problem, model (M-2) can be trans-

formed into the following mixed 0-1 goal programming model: 

( M −3 ) min F = 

n −1 ∑ 

i = 1 

n ∑ 

j = i + 1 
s i j d 

+ 
i j 

+ t i j d 
−
i j 

s . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δi j 

[ ( 

# h ji ∑ 

l = 1 
z σ (l) 

ji 
γ σ (l) 

ji 

) 

w i −
( 

# h ji ∑ 

l = 1 
z σ (l) 

ji 
γ σ (l) 

i j 

) 

w j 

] 

−d + 
i j 

+ d −
i j 

= 0 , i, j ∈ N, j > i 
n ∑ 

i = 1 
w i = 1 , w i ≥ 0 , i ∈ N 

# h ji ∑ 

l = 1 
z σ (l) 

ji 
= 1 , i, j ∈ N, j > i 

z σ (l) 
ji 

= 0 or 1 , i, j ∈ N, l = 1 , 2 , . . . , # h ji , j > i 

d + 
i j 
, d −

i j 
≥ 0 , i, j ∈ N, j > i 

Without loss of generality, when we consider that all the goal

functions ε i j ( i, j ∈ N) are fair, then we can set s i j = t i j = 1 ( i, j ∈ N).

Consequently, model (M-3) can be rewritten as follows. 

( M −4 ) min F = 

n −1 ∑ 

i = 1 

n ∑ 

j = i + 1 
(d + 

i j 
+ d −

i j 
) 

s . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δi j 

[ ( 

# h ji ∑ 

l = 1 
z σ (l) 

ji 
γ σ (l) 

ji 

) 

w i −
( 

# h ji ∑ 

l = 1 
z σ (l) 

ji 
γ σ (l) 

i j 

) 

w j 

] 

−d + 
i j 

+ d −
i j 

= 0 , i, j ∈ N, j > i 

n ∑ 

i = 1 
w i = 1 , w i ≥ 0 , i ∈ N 

# h ji ∑ 

l = 1 
z σ (l) 

ji 
= 1 , i, j ∈ N, j > i 

z σ (l) 
ji 

= 0 or 1 , i, j ∈ N, j > i, l = 1 , 2 , . . . , # h ji 

d + 
i j 
, d −

i j 
≥ 0 , i, j ∈ N, j > i 

(2) By Eq. (14) , the additive consistency preference relation can

be obtained by: 

δi j 

(
γ σ (1) 

i j 
or . . . o r γ

σ (# h i j ) 

i j 

)
= δi j 

[ 
0 . 5 + 

n − 1 

2 

( w i − w j ) 
] 
, i, j ∈ N 

(19)

where γ σ (l) 
i j 

is the l th largest element in h i j , # h ij is the number of

elements in H and δi j = { 0 , h i j = −
1 , h i j � = −

. 

Let S( γi j ) = γ (1) 
i j 

or . . . o r γ
(# h i j ) 

i j 
, by Eq. (19) , we have 

δi j S( γi j ) = δi j 

[ 
0 . 5 + 

n − 1 

2 

( w i − w j ) 
] 

Let ε i j = δi j | S( γi j ) − [0 . 5 + 

n −1 
2 ( w i − w j )] | , to obtain as many

additive consistency preferences as possible, we construct the fol-

lowing multi-objective programming model: 

( M − 5 ) min ε i j = δi j 

∣∣∣S( γi j ) −
[ 

0 . 5 + 

n − 1 

2 

( w i − w j ) 
] ∣∣∣, i, j ∈ N

s . t . 

n ∑ 

i = 1 
w i = 1 , w i ≥ 0 , i, j ∈ N. 

The solution to the above minimization problem is found by

solving the following goal programming model: 
( M − 6 ) min F = 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

s i j d 
+ 
i j 

+ t i j d 
−
i j 

 . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δi j 

[ 
S( γi j ) −

(
0 . 5 + 

n − 1 

2 

( w i − w j ) 
)] 

−d + 
i j 

+ d −
i j 

= 0 , i, j ∈ N, j > i 

∑ n 

i = 1 w i = 1 , w i ≥ 0 , i ∈ N 

d + 
i j 
, d −

i j 
≥ 0 , i, j ∈ N, j > i 

here d + 
i j 

is the positive deviation from the target of the goal ε i j ,

efined as 

 

+ 
i j 

= δi j 

[ 
S( γi j ) −

(
0 . 5 + 

n − 1 

2 

( w i − w j ) 
)] 

∨ 0 . 

 

−
i j 

is the negative deviation from the target of the goal ε i j , defined

s 

 

−
i j 

= δi j 

[ (
0 . 5 + 

n − 1 

2 

( w i − w j ) 
)

− S( γi j ) 
] 

∨ 0 . 

 i j and t i j are the weights corresponding to d + 
i j 

and d −
i j 

, respectively.

Similarly, model (M-6) can be transformed into the following

-1 mixed goal programming: 

( M − 7 ) min F = 

n −1 ∑ 

i = 1 

n ∑ 

j = i + 1 
s i j d 

+ 
i j 

+ t i j d 
−
i j 

 . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δi j 

[ 

# h i j ∑ 

l = 1 
z σ (l) 

i j 
γ σ (l) 

i j 
−

(
0 . 5 + 

n − 1 

2 

( w i − w j ) 
)] 

−d + 
i j 

+ d −
i j 

= 0 , i, j ∈ N, j > i 

n ∑ 

i = 1 
w i = 1 , w i ≥ 0 , i ∈ N 

# h i j ∑ 

l = 1 
z σ (l) 

i j 
= 1 , i, j ∈ N, j > i 

z σ (l) 
i j 

= 0 or 1 , i, j ∈ N, l = 1 , 2 , . . . , # h i j , j > i 

d + 
i j 
, d −

i j 
≥ 0 , i, j ∈ N, j > i 

Without loss of generality, when we consider that all the goal

unctions ε i j ( i, j ∈ N) are fair, then we can set s i j = t i j = 1 ( i, j ∈ N).

onsequently, model (M-7) can be rewritten as follows: 

( M − 8 ) min F = 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

(d + 
i j 

+ d −
i j 
) 

 . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δi j 

[ 

# h i j ∑ 

l = 1 
z σ (l) 

i j 
γ σ (l) 

i j 
−

(
0 . 5 + 

n − 1 

2 

( w i − w j ) 
)] 

−d + 
i j 

+ d −
i j 

= 0 , i, j ∈ N, j > i 

n ∑ 

i = 1 
w i = 1 , w i ≥ 0 , i ∈ N 

# h i j ∑ 

l = 1 
z σ (l) 

i j 
= 1 , i, j ∈ N, j > i 

z σ (l) 
i j 

= 0 or 1 , i, j ∈ N, j > i, l = 1 , 2 , . . . , # h i j 

d + 
i j 
, d −

i j 
≥ 0 , i, j ∈ N, j > i 

Once we have developed an algorithm for solving a computa-

ional problem and analyzed its worst-case time requirements as

 function of the size of its input (in terms of the O-notation).

e analyze the complexity of computation of different models.

ime complexity of (M-4) –(M-8) is o( n 4 × l) , which depends
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n product of n 4 ( n is the number of alternatives) and l ( l =
 n −1 
i = 1 

∏ n 
j = i + 1 # h i j , i, j ∈ N, j > i ). Meanwhile, the space complex-

ty of (M-4) –(M-8) is o (1). 

By solving this model, we can also obtain the priority vector

 = ( w 1 , w 2 , . . . , w n ) 
T of the incomplete HFPR H = (h i j ) n ×n . We

ill extend the above models to obtain the collective priority vec-

or of two or more incomplete HFPRs. 

Suppose that there are m incomplete HFPRs H k = ( h i j,k ) n ×n ( k ∈
), and v = ( v 1 , v 2 , . . . , v n ) T is their collective priority vector,

here v i ≥ 0 , i ∈ N, 
∑ n 

i = 1 v i = 1 . E = { e 1 , e 2 , . . . , e m 

} be a finite set

f experts, where e k denotes the k th expert. U = ( u 1 , u 2 , . . . , u m 

) T 

e the weighting vector of experts, where 
∑ m 

k = 1 u k = 1 , u k ≥ 0 and

 k means the importance degree of expert e k . We also construct m

ndication matrices �k = ( δi j,k ) n ×n ( k ∈ M) of the incomplete HF-

Rs H k = ( h i j,k ) n ×n ( k ∈ M), where 

i j,k = 

{
0 , h i j,k = −
1 , h i j,k � = −

For the multiplicative consistency HFPR, v = ( v 1 , v 2 , . . . , v n ) T 
an be obtained by solving the following model, which is an ex-

ension of the model (M-4): 

( M − 9 ) min F = 

m ∑ 

k = 1 

n −1 ∑ 

i = 1 

n ∑ 

j = i + 1 
u k 

(
d + 

i j,k 
+ d −

i j,k 

)

 . t . 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

δi j,k ( S( γ ji,k ) v i − S( γi j,k ) v j ) − d + 
i j,k 

+ d −
i j,k 

= 0 , i, j ∈ N, j > i 

n ∑ 

i = 1 
v i = 1 , v i ≥ 0 , i ∈ N 

d + 
i j,k 

, d −
i j,k 

≥ 0 , i, j ∈ N, j > i, k ∈ M 

here d + 
i j,k 

is the positive deviation, defined as 

 

+ 
i j,k 

= δi j,k (S( γ ji,k ) v i − S( γi j,k ) v j ) ∨ 0 . 

 

−
i j,k 

is the negative deviation, defined as 

 

−
i j,k 

= δi j,k (S( γi j,k ) v j − S( γ ji,k ) v i ) ∨ 0 . 

Model (M-9) can be transformed into the following 0-1 mixed

oal programming: 

( M −10 ) min F = 

m ∑ 

k = 1 

n −1 ∑ 

i = 1 

n ∑ 

j = i + 1 
u k 

(
d + 

i j,k 
+ d −

i j,k 

)

 . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δ(k ) 
i j 

[ ( 

# h ji,k ∑ 

l = 1 
z σ (l) 

ji,k 
γ σ (l) 

ji,k 

) 

v i −
( 

# h ji,k ∑ 

l = 1 
z σ (l) 

ji,k 
γ σ (l) 

i j,k 

) 

v j 

] 

−d + 
i j,k 

+ d −
i j,k 

= 0 , i, j ∈ N, j > i, k ∈ M 

n ∑ 

i = 1 
v i = 1 , v i ≥ 0 , i ∈ N 

# h ji,k ∑ 

l = 1 
z σ (l) 

ji,k 
= 1 , i, j ∈ N, j > i, k ∈ M 

z σ (l) 
ji,k 

= 0 or 1 , i, j ∈ N, j > i, k ∈ M, l = 1 , 2 , . . . , # h ji,k 

d + 
i j,k 

, d −
i j,k 

≥ 0 , i, j ∈ N, j > i, k ∈ M 

For the additive consistency HFPR, v = ( v 1 , v 2 , . . . , v n ) T can be

btained by solving the following model, which is an extension of

he model (M-8): 

( M − 11 ) min F = 

m ∑ 

n −1 ∑ 

n ∑ 

u k 

(
d + 

i j,k 
+ d −

i j,k 

)

k = 1 i = 1 j = i + 1 
 . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δi j,k 

[ 
S( γi j,k ) −

(
0 . 5 + 

n − 1 

2 

( v i − v j ) 
)] 

−d + 
i j,k 

+ d −
i j,k 

= 0 , i, j ∈ N, j > i 

n ∑ 

i = 1 
v i = 1 , v i ≥ 0 , i ∈ N 

d + 
i j,k 

, d −
i j,k 

≥ 0 , i, j ∈ N, j > i, k ∈ M 

here d + 
i j,k 

is the positive deviation, defined as 

 

+ 
i j,k 

= δi j,k 

[ 
S( γi j,k ) −

(
0 . 5 + 

n − 1 

2 

( v i − v j ) 
)] 

∨ 0 . 

 

−
i j,k 

is the negative deviation, defined as 

 

−
i j,k 

= δi j,k 

[ (
0 . 5 + 

n − 1 

2 

( v i − v j ) 
)

− S( γi j,k ) 
] 

∨ 0 

Model (M-11) can be transformed into the following 0-1 mixed

oal programming: 

( M − 12 ) min F = 

m ∑ 

k = 1 

n −1 ∑ 

i = 1 

n ∑ 

j = i + 1 
u k 

(
d + 

i j,k 
+ d −

i j,k 

)

 . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δi j,k 

[ 

# h i j,k ∑ 

l = 1 
z σ (l) 

i j,k 
γ σ (l) 

i j,k 
−

(
0 . 5 + 

(n − 1) 

2 

( v i − v j ) 
)] 

−d + 
i j,k 

+ d −
i j,k 

= 0 , i, j ∈ N, j > i 

n ∑ 

i = 1 
v i = 1 , v i ≥ 0 , i ∈ N 

# h i j,k ∑ 

l = 1 
z σ (l) 

i j,k 
= 1 , i, j ∈ N, j > i, k ∈ M 

d + 
i j,k 

, d −
i j,k 

≥ 0 , i, j ∈ N, j > i, k ∈ M 

. Illustrative cases of study 

In this section, two numerical examples are provided to

emonstrate the practicality and effectiveness of the developed

odels. 

.1. Case of study with four decision alternatives and an incomplete 

FPR 

Consider a single DM’s decision problem with four alter-

atives x i ( i = 1 , 2 , 3 , 4 ). The DM provides his/her preferences

ver the four decision alternatives, as an incomplete HFPR as

ollows: 

 = 

⎡ 

⎢ ⎣ 

{ 0 . 5 } − { 0 . 6 , 0 . 7 } { 0 . 4 } 
− { 0 . 5 } { 0 . 4 } −

{ 0 . 4 , 0 . 3 } { 0 . 6 } { 0 . 5 } { 0 . 3 , 0 . 4 } 
{ 0 . 6 } − { 0 . 7 , 0 . 6 } { 0 . 5 } 

⎤ 

⎥ ⎦ 

. 

Based on Theorem 2 , we know that H is an acceptable incom-

lete HFPR, which means that the priority weights can be derived

y the known HFEs. 

(1) According to the model (M-4), we can construct the follow-

ng 0-1 goal programming model: 

in F = 

3 ∑ 

i = 1 

4 ∑ 

j = i +1 

(d + 
i j 

+ d −
i j 
) 
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Table 1 

Performance comparisons for Example 1. 

Methods W 

∗ Ranking MD MAD 

Model (M-4) (0.280 0, 0.120 0, 0.180 0, 0.420 0) T x 4 � x 1 � x 3 � x 2 0 .0013 0 .0087 

Model (M-8) (0.2833, 0.1500, 0.2167, 0.3500) T x 4 � x 1 � x 3 � x 2 0 .1369 0 .0824 

w  

v

M  

w  

p  

p

 

t  

m  

a

5

 

p  

a

 

b  

(  

a  

e  

t  

o  

t  

c  

l  

g  

t  

v  

t  

s  

e  

a

H

H

H

 

c  

t  

u

 

p

m

s . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−d + 
12 

+ d −
12 

= 0 (
z σ (1) 

31 
× 0 . 4 + z σ (2) 

31 
× 0 . 3 

)
w 1 

−
(
z σ (1) 

31 
× 0 . 6 + z σ (2) 

31 
× 0 . 7 

)
w 3 − d + 

13 
+ d −

13 
= 0 

0 . 6 w 1 − 0 . 4 w 4 − d + 
14 

+ d −
14 

= 0 

0 . 6 w 2 − 0 . 4 w 3 − d + 
23 

+ d −
23 

= 0 (
z σ (1) 

43 
× 0 . 7 + z σ (2) 

43 
× 0 . 6 

)
w 3 

−
(
z σ (1) 

43 
× 0 . 3 + z σ (2) 

43 
× 0 . 4 

)
w 4 − d + 

34 
+ d −

34 
= 0 

w 1 + w 2 + w 3 + w 4 = 1 

z σ (1) 
31 

+ z σ (2) 
31 

= 1 

z σ (1) 
43 

+ z σ (2) 
43 

= 1 

z σ (1) 
31 

, z σ (2) 
31 

, z σ (1) 
43 

, z σ (2) 
43 

= 0 or 1 

d + 
i j 
, d −

i j 
≥ 0 , i, j = 1 , 2 , 3 , 4 , j > i 

By solving the above optimization problem, we have: 

F = 0 . 004 , w 1 = 0 . 28 , w 2 = 0 . 12 , w 3 = 0 . 18 , 

w 4 = 0 . 42 , d + 12 = d −12 = 0 , 

d + 13 = 0 . 004 , d −13 = 0 , d + 23 = d −23 = 0 , d + 14 = d −14 = 0 , 

d + 24 = d −24 = 0 , d + 34 = d −34 = 0 . 

Therefore, the ranking of these four alternatives is x 4 � x 1 �
x 3 � x 2 . 

(2) According to the model (M-8), we can build this optimiza-

tion problem as follows: 

min F = 

3 ∑ 

i = 1 

4 ∑ 

j = i +1 

(d + 
i j 

+ d −
i j 
) 

s . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−d + 
12 

+ d −
12 

= 0 

z σ (1) 
13 

× 0 . 6 + z σ (2) 
13 

× 0 . 7 

−( 0 . 5 + 1 . 5( w 1 − w 3 ) ) − d + 
13 

+ d −
13 

= 0 

0 . 4 − ( 0 . 5 + 1 . 5( w 1 − w 4 ) ) − d + 
14 

+ d −
14 

= 0 

0 . 4 − ( 0 . 5 + 1 . 5( w 2 − w 3 ) ) − d + 
23 

+ d −
23 

= 0 

−d + 
24 

+ d −
24 

= 0 

z σ (1) 
34 

× 0 . 3 + z σ (2) 
34 

× 0 . 4 

−( 0 . 5 + 1 . 5( w 3 − w 4 ) ) − d + 
34 

+ d −
34 

= 0 

w 1 + w 2 + w 3 + w 4 = 1 

z σ (1) 
13 

+ z σ (2) 
13 

= 1 

z σ (1) 
34 

+ z σ (2) 
34 

= 1 

z σ (1) 
13 

, z σ (2) 
13 

, z σ (1) 
34 

, z σ (2) 
34 

= 0 or 1 

d + 
i j 
, d −

i j 
≥ 0 , i, j = 1 , 2 , 3 , 4 , j > i 

By solving the above optimization problem, we have: 

F = 0 , w 1 = 0 . 2833 , w 2 = 0 . 1500 , w 3 = 0 . 2167 , 

w 4 = 0 . 3500 , d + 12 = d −12 = 0 , 

d + 13 = d −13 = 0 , d + 23 = d −23 = 0 , d + 14 = d −14 = 0 , 

d + 24 = d −24 = 0 , d + 34 = d −34 = 0 . 

So the ranking of these four alternatives is x 4 � x 1 � x 3 � x 2 ,

which is same as that obtained by the model (M-4). 

To further compare the performances of these two models in

fitting incomplete HFPRs, the following evaluation criteria are in-

troduced: 

Maximum Deviation (MD) for incomplete HFPR 

MD = max 
i, j,k 

{
δi j,k 

(
γ ′ 

i j,k 

γ ′ 
ji,k 

w j 

w i 

+ 

γ ′ 
ji,k 

γ ′ 
i j,k 

w i 

w j 

− 2 

)∣∣∣∣i, j ∈ N, k ∈ M 

}
(20)
here γ ′ 
i j,k 

is the value of S( γi j,k ) when the F gets the minimal

alue. 

Maximum Absolute Deviation (MAD) for incomplete HFPR 

AD = max 
i, j,k 

{
δi j,k 

∣∣∣∣γ ′ 
i j,k −

w i 

w i + w j 

∥∥∥∥i, j ∈ N, k ∈ M 

}
(21)

here d i j,k = γ ′ 
i j,k 

− w i / ( w i + w j ) is the fitting error for γ ′ 
i j,k 

. If the

riority vector W = ( w 1 , . . . , w n ) 
T is able to precisely fit the incom-

lete HFPR H k , then | d i j,k | ≡ 0 , otherwise, | d i j,k | > 0 . 

From Table 1 , it’s shown that the model (M-4) achieves an iden-

ical ranking as model (M-8). Model (M-4) performs better than

odel (M-8) in terms of two performance evaluation criteria: MD

nd MAD, which partly shows the advantage of the model (M-4). 

.2. GDM problem with three alternatives and three experts 

In the following, we further illustrate the practicality of incom-

lete HFPRs in group decision making by utilizing a practical ex-

mple (adapted from [25] ). 

The enterprise’s board of directors, which includes three mem-

ers e k ( k = 1 , 2 , 3 ), have to plan the development of large projects

strategy initiatives) for the following five years. Suppose that there

re three possible projects x i ( i = 1 , 2 , 3 ) to be evaluated. It is nec-

ssary to compare these projects in order to select that which is

he most important as well as order them from the point view

f their importance, taking into account four criteria suggested by

he Balanced Scored methodology: ( 1 ) financial perspective; ( 2 ) the

ustomer satisfaction; ( 3 ) internal business process perspective; ( 4 )

earning and growth perspective. First, the specialists are asked to

ive their opinion relative to each project. Because of the uncer-

ainty of the attributes, it is difficult for the DMs to use just one

alue to provide their preferences. To facilitate the elicitation of

heir preferences, HFS is just an effective tool to deal with such

ituations. Furthermore, some experts may be lacking in knowl-

dge and have limited expertise related to the problem domain,

nd thus, these members give their incomplete HFPRs as follows: 

 1 = 

[ { 0 . 5 } { 0 . 6 } −
{ 0 . 4 } { 0 . 5 } { 0 . 2 , 0 . 3 } 

− { 0 . 8 , 0 . 7 } { 0 . 5 } 

] 

, 

 2 = 

[ { 0 . 5 } − { 0 . 3 , 0 . 4 } 
− { 0 . 5 } { 0 . 3 } 

{ 0 . 7 , 0 . 6 } { 0 . 7 } { 0 . 5 } 

] 

, 

 3 = 

[ { 0 . 5 } { 0 . 3 , 0 . 4 } { 0 . 4 } 
{ 0 . 7 , 0 . 6 } { 0 . 5 } −

{ 0 . 6 } − { 0 . 5 } 

] 

. 

From Theorem 2 , we know that H k ( k = 1, 2, 3) are all ac-

eptable incomplete HFPRs. That is, the priority vector can be ob-

ained through the known HFEs. Without loss of generality, we set

 1 = u 2 = u 3 = 1 / 3 . 

(1) According to model (M-10), we can build this optimization

roblem as follows: 

in F = 

3 ∑ 

k = 1 

2 ∑ 

i = 1 

3 ∑ 

j = i + 1 
u k 

(
d + 

i j,k 
+ d −

i j,k 

)
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Table 2 

Performance comparisons for Example 2. 

Methods W 

∗ Ranking MD MAD 

Model (M-10) (0.3182, 0.2045, 0.4773) T x 3 � x 1 � x 2 0 .0013 0 .0088 

Model (M-12) (0.3333, 0.2333, 0.4333) T x 3 � x 1 � x 2 0 .0523 0 .0500 
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p  

F  
 . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 . 4 v 1 − 0 . 6 v 2 − d + 
12 , 1 

+ d −
12 , 1 

= 0 

−d + 
13 , 1 

+ d −
13 , 1 

= 0 (
z σ (1) 

32 , 1 
× 0 . 8 + z σ (2) 

32 , 1 
× 0 . 7 

)
v 2 −

(
z σ (1) 

32 , 1 
× 0 . 2 + z σ (2) 

32 , 1 
× 0 . 3 

)
v 3 

−d + 
23 , 1 

+ d −
23 , 1 

= 0 

−d + 
12 , 2 

+ d −
12 , 2 

= 0 (
z σ (1) 

31 , 2 
× 0 . 7 + z σ (2) 

31 , 2 
× 0 . 6 

)
v 1 −

(
z σ (1) 

31 , 2 
× 0 . 3 + z σ (2) 

31 , 2 
× 0 . 4 

)
v 3 

−d + 
13 , 2 

+ d −
13 , 2 

= 0 

0 . 7 v 2 − 0 . 3 v 3 − d + 
23 , 2 

+ d −
23 , 2 

= 0 (
z σ (1) 

21 , 3 
× 0 . 7 + z σ (2) 

21 , 3 
× 0 . 6 

)
v 1 −

(
z σ (1) 

21 , 3 
× 0 . 3 + z σ (2) 

21 , 3 
× 0 . 4 

)
v 2 

−d + 
12 , 3 

+ d −
12 , 3 

= 0 

0 . 6 v 1 − 0 . 4 v 3 − d + 
13 , 3 

+ d −
13 , 3 

= 0 

−d + 
23 , 3 

+ d −
23 , 3 

= 0 

v 1 + v 2 + v 3 = 1 

z σ (1) 
32 , 1 

+ z σ (2) 
32 , 1 

= 1 

z σ (1) 
31 , 2 

+ z σ (2) 
31 , 2 

= 1 

z σ (1) 
21 , 3 

+ z σ (2) 
21 , 3 

= 1 

z σ (1) 
32 , 1 

, z σ (2) 
32 , 1 

, z σ (1) 
31 , 2 

, z σ (2) 
31 , 2 

, z σ (1) 
21 , 3 

, z σ (2) 
21 , 3 

= 0 or 1 

d + 
i j,k 

, d −
i j,k 

≥ 0 , i, j = 1 , 2 , 3 , j > i, k = 1 , 2 , 3 

By solving the above optimization problem, we have: 

F = 0 . 0379 , v 1 = 0 . 3182 , v 2 = 0 . 2045 , v 3 = 0 . 4773 , 

d + 12 , 1 = 0 . 45 × 10 

−2 , 

d −12 , 1 = 0 , d + 13 , 1 = d −13 , 1 = 0 , d + 23 , 1 = d −23 , 1 = 0 , d + 12 , 2 = d −12 , 2 = 0 ,

d + 13 , 2 = d −13 , 2 = 0 

 

+ 
23 , 2 = d −23 , 2 = 0 , d + 12 , 3 = 0 . 1091 , d −12 , 3 = 0 , d + 13 , 3 = d −13 , 3 = 0 , 

 

+ 
23 , 3 = d −23 , 3 = 0 . 

Therefore, the ranking of these three alternatives is x 3 � x 1 � x 2 .

(2) According to the model (M-12), we can build this optimiza-

ion problem as follows: 

in F = 

3 ∑ 

k = 1 

2 ∑ 

i = 1 

3 ∑ 

j = i +1 

u k 

(
d + 

i j,k 
+ d −

i j,k 

)

 . t . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 . 6 − (0 . 5 + v 1 − v 2 ) − d + 
12 , 1 

+ d −
12 , 1 

= 0 

−d + 
13 , 1 

+ d −
13 , 1 

= 0 [
z σ (1) 

23 , 1 
× 0 . 2 + z σ (2) 

23 , 1 
× 0 . 3 −(0 . 5 + v 2 −v 3 ) 

]
− d + 

23 , 1 
+ d −

23 , 1 
= 0

−d + 
12 , 2 

+ d −
12 , 2 

= 0 [
z σ (1) 

13 , 2 
× 0 . 3 + z σ (2) 

13 , 2 
× 0 . 4 −(0 . 5 + v 1 −v 3 ) 

]
− d + 

13 , 2 
+ d −

13 , 2 
= 0 

0 . 3 − (0 . 5 + v 2 − v 3 ) − d + 
23 , 2 

+ d −
23 , 2 

= 0 [
z σ (1) 

12 , 3 
× 0 . 3 + z σ (2) 

12 , 3 
× 0 . 4 −(0 . 5 + v 1 −v 2 ) 

]
− d + 

12 , 3 
+ d −

12 , 3 
= 0 

0 . 4 − (0 . 5 + v 1 − v 3 ) − d + 
13 , 3 

+ d −
13 , 3 

= 0 

−d + 
23 , 3 

+ d −
23 , 3 

= 0 

v 1 + v 2 + v 3 = 1 

z σ (1) 
23 , 1 

+ z σ (2) 
23 , 1 

= 1 

z σ (1) 
13 , 2 

+ z σ (2) 
13 , 2 

= 1 

z σ (1) 
12 , 3 

+ z σ (2) 
12 , 3 

= 1 

z σ (1) 
23 , 1 

, z σ (2) 
23 , 1 

, z σ (1) 
13 , 2 

, z σ (2) 
13 , 2 

, z σ (1) 
12 , 3 

, z σ (2) 
12 , 3 

= 0 or 1 

d + 
i j,k 

, d −
i j,k 

≥ 0 , i, j = 1 , 2 , 3 , j > i, k = 1 , 2 , 3 

By solving the above optimization problem, we have: 

F = 0 . 0 6 67 , v 1 = 0 . 3333 , v 2 = 0 . 2333 , v 3 = 0 . 4333 , 
d + 12 , 1 = d −12 , 1 = 0 , 

d + 13 , 1 = d −13 , 1 = 0 , d + 23 , 1 = d −23 , 1 = 0 , d + 12 , 2 = d −12 , 2 = 0 , 

d + 13 , 2 = d −13 , 2 = 0 , 

 

+ 
23 , 2 = d −23 , 2 = 0 , d + 12 , 3 = 0 . 2 , d −12 , 3 = 0 , d + 13 , 3 = d −13 , 3 = 0 , 

 

+ 
23 , 3 = d −23 , 3 = 0 . 

So the ranking of these three alternatives is x 3 � x 1 � x 2 , which

s same as that obtained by the model (M-10). 

The results of comparisons are shown in Table 2 , from which

e can see that model (M-10) achieves the same ranking x 3 � x 1 �
 2 as model (M-12). Moreover, model (M-10) has smaller MD and

AD than model (M-12). 

emark 2. It should be noted that many methods have been pro-

osed to derive the weighting vector for multiplicative preference

elations and to solve group decision making problems. However,

hese methods fail when addressing situations in which the in-

ut arguments take the form of HFPRs. Because of the models are

pecifically used for HFPRs, and according to our knowledge, there

s no previous work which concentrates on deriving the weighing

ector from the incomplete HFPRs, it is not easy to continue with

omparative analysis. In the following, we discuss some advantages

nd differences as compared with the existing different kinds of

ethods for GDM problems. 

(1) In the above case study, Parreiras et al. [25] proposes a flex-

ible consensus scheme for GDM problems under linguistic

assessments. However, in their approach, they first trans-

formed the linguistic variables into triangular fuzzy num-

bers, which led to information losing. Second, they used the

consensus scheme to rank the alternatives, which is very

complicated, while our method can rank the alternatives di-

rectly. 

(2) For the incomplete FPRs, for example, Xu [42] , Xu et al. [36] ,

their methods did not consider the hesitant situation, which

limits their application. However, if there is only one value

in each pairwise value in the HFPRs, the methods proposed

in this paper will become reduced to the traditional incom-

plete FPRs. 

(3) Zhu et al. [50] presented the ranking methods with HFPRs in

GDM environments. These methods only consider the mul-

tiplicative consistency of HFPRs. Generally, the cardinal con-

sistency of FPRs includes multiplicative consistency and ad-

ditive consistency. In this paper, we consider these different

types of consistencies for HFPRs. Furthermore, if δi j = 1 for

all i, j ∈ N in all the models (M-1)-(M-12), then the proposed

methods can be used to derive the rankings for the complete

HFPRs. Which means that the proposed methods can deal

with both the complete and incomplete HFPRs, while Zhu et

al.’s [45] method is only suitable to deal with the complete

ones. In other words, Zhu et al.’s method would be consid-

ered as a special case of the proposed method. 

. Conclusions 

We have investigated group decision making problems, where

reference information offered by DMs is hesitant and incomplete.

or the sake of a better description of this situation, we have
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proposed a new concept of incomplete HFPRs, which are an ef-

fective tool to collect and present preferences provided by DMs

in decision making. Incomplete HFPRs do not merely permit the

DMs to provide all of the possible values but also allow them to

give null values when comparing two alternatives. In this paper,

we also introduced the concept of multiplicative consistency in-

complete HFPR and additive consistency incomplete HFPR. More-

over, to obtain the priority vector of an incomplete HFPR, we have

proposed two programming models based on multiplicative con-

sistency and additive consistency respectively. These two goal pro-

gramming models are also extended to obtain the collective pri-

ority vector of several incomplete HFPRs. Finally, the practicability

and effectiveness of the developed models have been verified using

two illustrative examples. 
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